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ABSTRACT 
 

According to experimental data available for high explosives, dependence of detonation 
velocity on charge diameter D(d) comprises two separate branches for low velocity and 
normal detonations. In an intermediate velocity range steady detonations are not 
realized. Our consideration shows that this form of D(d) relation stems from the Z–
shaped relationship between normal-to-front velocity and front curvature Dn(K), which 
has two turning points. We have got this Z-shaped curve by using a simple model of 
steady nonideal detonation, including the conversion rate equation with a two-term 
pressure function. Here the first term with the pressure exponent near 1 is responsible 
for the surface burning under conditions typical of low velocity detonation, and the 
second term with the pressure exponent more than 2 controls chemical conversion under 
normal detonation pressures. Varying coefficients of this function we have reproduced 
numerically D(d) relation with two separate branches observed in unconfined charges of 
powdered high explosives. We also demonstrate that the Z–shaped Dn(K) relationship 
could explain some delayed transient effects which have been observed in shock 
initiation of explosive materials and, to date, have no clear interpretation. 
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INTRODUCTION 

 
Dependence of detonation velocity on charge diameter D(d) is one of the principle characteristics of 
high and non-ideal explosives which in particular is used to extract data on chemical conversion rates. 
According to experimental data available for high explosives [1–4], D(d) relation comprises two 
separate branches for low velocity (typically, nearby 1–2 km/s) and normal detonations. In an 
intermediate velocity range steady detonations were not observed. There is a range of charge diameters 
in which both low velocity and normal detonations could be observed depending on initiation energy.  
 Fig. 1 shows a representative example of experimental data on D(d) relation obtained in [1] 
for TNT in unconfined charges of loose-packed density. In these runs in addition to the charge 
diameter the velocity of entering wave produced by the booster was also varied. There was no 
detonation initiation observed at charge diameters of 22.2 mm and less irrespective of the entering 
wave velocity and at the charge diameters of 25.4 mm and more if the entering wave velocity was 
below the threshold values shown by line 1. The points corresponding to a steady detonation are 
separated into two branches. Three upper points with the detonation velocities of 3.4, 4.1 and 4.4 km/s 
correspond to the normal detonation branch. To get them the initiating wave velocity should be above 
the line 2 (at the charge diameters 25.4–30.2 mm) and above the line 1 (at the charge diameters more 
than 30.2 mm). Low velocity detonation branch (LVD) consists of points with detonation velocity of 
1.7 and 1.9 km/s at diameters of 25.4 and 30.2 mm. To get them, the initiating wave velocity was 
between the lines 1 and 2.       

For other high explosives (RDX, Tetryl and PETN – see [2–4]) the dependence D(d) has the 
same form as above with the aforesaid typical properties: (i) no detonation observed with intermediate 
velocities; (ii) there is a range of charge diameters in which, depending on intensity of the initiating 
impulse, one can get a steady detonation propagating with high or low velocity.  

Though theoretical principles of LVD are well studied and discussed, up to now the problem 
of D(d) relation consisting of two separate branches has no adequate consideration. The situation can 
be exemplified by the paper [5] in which the authors, famous specialists in non-ideal detonations, after 
detailed analysis of experimental data for Tetryl presented in [2] could not offer a satisfactory 
interpretation and include the low velocity branch into the unique D(d) relation calculated numerically.   

In this work the conditions necessary for a theoretical model to predict the generalized D(d) 
relation with two separate branches have been considered. A model of the steady detonation developed 
on the base of classical quasi–1D approximation for weakly diverging flow of two-phase reactive 
medium has been applied to the analysis of experimental data available. Then, by the best fitting of the 
calculated and experimental D(d) curves we deduced the coefficients of the reaction rate equation 
which enable one to consider the processes taking place in the LVD waves. 

Numerical analysis results in the Z-shaped curve for a velocity–curvature relationship with 
two turning points. The Z-shaped relationship, being applied to unsteady phenomena, enables us to 
shed light on some delayed transient effects (including the so-called “delayed detonation”) [2, 6–8] 
which have been observed in shock and electrical initiation of explosive materials, and, to date, have 
no clear interpretation. To demonstrate these effects numerical modeling of the spherical diverging 
detonation has been presented.  

 
MODEL 

 
Let us consider the steady reaction zone of a self-sustained detonation which propagates with a 

constant velocity D along the axis of unconfined cylindrical charge of an explosive material of 
diameter d. We interpret LVD as a particular kind of a steady non-ideal detonation, which 
characteristics (relatively low values of detonation velocity and pressure) relate to features of the 
chemical conversion rate. Analysis has been conducted in the frame of the detonation shock dynamic 
approximation (assuming that the velocity normal to the front Dn is a function of the local front 
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curvature K, and flow in the reaction zone is weakly divergent) [9]. If the curvature–normal velocity 
relationship K–Dn is known for a high explosive, D(d) relation can be deduced by the following 
procedure. For the given detonation velocity D, simple geometry consideration for a steady curved 
wave leads to the following differential equation for the shock front shape Y(r) [10]: 
 ]/)1()[1( 2/122 rYYKYY ′−′+′+=′′   (1) 
with a boundary condition at the charge axis:  
 0:0 =′== YYr      (2) 
In equation (1) K is the function K(Dn) with Dn related to D by  

2/1)21/( YDnD ′+=      (3) 
Equation (1) is integrated from r = 0 up to a point r*, in which the relevant particle velocity at the 
wave front becomes equal to the sound speed (Cf): 
 )21/(222 −′++= YDfUfC     (4) 

 This point assumes to be the edge of the flow and defines the charge diameter *2rd =  
corresponding to the considered detonation velocity D. Then the same calculations repeat for the other 
value of D, etc.  

It is well-known that the shape of D(d) curve and its characteristics (deficit of detonation 
velocity, critical detonation diameter, etc.) depend on the shape of the Dn–K relationship. In order to 
have D(d) relation with two separate branches, Dn–K relationship should have a Z-shape with two 
turning points; Fig 2 shows an example of this relationship. The intermediate branch of this 
relationship along which velocity increases with the front curvature covers a range of velocities which 
cannot be realized in a steady detonation wave because of obvious instability of such behavior in 
regard to any perturbations at the front. So, we come to the following tasks: (i) to state a form of the 
reaction rate equation necessary to get the Z-shaped Dn–K relationship, and (ii) to select coefficients of 
this equation to reproduce D(d) curves observed experimentally. Below we shall demonstrate solution 
of these tasks by analyzing results of numerical modeling. 

Our model developed for the analysis and presented elsewhere [11, 12] relies upon the theory 
of multiphase reactive medium [13]. Basic assumptions of the model are as follows. The reactive 
medium is a mixture of the initial explosive component (index 1) and products of their final chemical 
conversion (index 2). The state of each point of the reactive medium is determined by mass fractions 
of these species (ηi) with the density and internal energy of the mixture calculated from density (ρi) and 
internal energy (ei) of these species by the additivity rule. The species are in local mechanical 
equilibrium, that is, they have identical pressure P and material velocity U but different temperatures. 

Let us consider an elementary stream tube in the reaction zone behind the curved wave front 
with the total curvature K and normal velocity Dn. Along the axis of this stream tube (x ≥ 0) normal to 
the wave front, one can deduce the following equation set: 
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Here (5–9) are the conservation equations of mass, momentum and energy of the mixture and 
for mass and energy of the initial material; the equations (10–11) express internal energy e and density 
ρ of the mixture as a function of energy, density and mass fractions of the components ηi in accordance 
with the additivity rule; (12) is the normalization rule of the mass fractions of the components; (13) 
and (14) are the equations of state of the components in the Mie-Gruneizen form. Additional 
designations: S is the area of cross-section of a flow tube, M is intensity of chemical conversion, Г is 
Gruneizen coefficient, the index "0" designates the initial conditions, and heat effect of the reaction 
equals to (e01–e02).  

The right part of the equation (5) is the term responsible for the flow divergence effect. 
Assuming that the radius of the front curvature is much greater than the reaction zone length, and 
following [10], one can write 

2/1
)1/()(ln

Kx
KUDS

dx
d

n −
−=       (15) 

Coefficients of the EOS of solid (13) are determined using the literary data on Hugoniot and 
Gruneizen coefficient. The coefficients of the EOS of detonation products (14) are fitted to get the best 
approximation of CJ detonation parameters calculated by using the thermodynamic code [14] with the 
BKWC EOS for the initial densities of explosive material varied in a range covering the detonation 
pressures expected in normal and low velocity detonations. Fig. 3 shows an example of calibration for 
coefficients of gaseous EOS.  

Boundary conditions at the wave front (at x = 0) are assumed to be the common conservation 
equations at the shock discontinuity:  

ffno UD ρρ = ; )( fnnof UDDP −= ρ ; 2/)( 2
fnof UDee −+=  (16) 

From a physical viewpoint they suggest that the relaxation processes taking place during shock 
loading of a porous explosive material and resulting in mechanical equilibrium are much faster (their 
duration may be estimated by use of a characteristic time of pore collapse which equals 4µ/Pf [15], 
where µ is the effective viscosity of solid explosive) than the chemical conversion time. Pore collapse 
is accompanied by a dissipative heating of pore surface layers and formation of hot spots. For high 
explosives of loose-packed density at a pressure exceeding a threshold value Pign (this value typically 
equals several hundreds MPa) the temperature in hot spots reaches a value sufficient to begin fast 
chemical reactions. Both the chemical reactions in hot spots and filling of pores with reaction products 
which contribute into pressure relaxation at a meso–scale level are main components of the shock 
loading process of porous HE and should be attributed to the wave front. According to the theoretical 
analysis [15], only several percents of HE are consumed in hot spots (η2f in our designations). The 
delay of reaction initiation in hot spots quickly drops with increase of the wave amplitude, and already 
at amplitudes Pf exceeding the threshold value Pign by several tens of percents, the sum of the initiation 
delay and duration of reactions in hot spots occupies less than a half of the characteristic time of pore 
collapse. A detailed analysis of η2f and its dependence on shock pressure is beyond this study; here we 
conducted calculations with η2f being constant and equal to 2 %. We have preliminary varied the value 
of η2f to be sure that it does not affect appreciably the results of modeling. This physically significant 
parameter in addition eliminates the singularity of the equation set at the initial point.  

So, chemical conversion in the reaction zone begins without a delay just behind the wave 
front. At low pressures specific of LVD, the chemical conversion proceeds in the surface (explosion) 
burning mode [16]. For this case, intensity of chemical conversion M can be expressed as the product 
of specific surface area and rate of burning (regression); it results in M being a function of the reactant 
content and pressure. Relying upon extrapolation of experimental data on the layer-by-layer burning of 
HE in sticks, this pressure dependence is assumed to be close to linear. For a normal detonation, the 
contribution of volume reactions is more significant. Nevertheless, even in this case the formal law of 
reaction rate can be presented as a function of the reactant content and pressure. For these reasons we 
have used in our model the following two-term equation which formally coincides with the Forest Fire 
equation [17]: 



A GENERALIZED DEPENDENCE OF DETONATION VELOCITY ON CHARGE DIAMETER 
INCLUDING LOW VELOCITY DETONATION  

 

 5

])/()/[()/( 1
3/2

101101
k

ref
n

ref PPgPPGM += ηηρ      (17)  

Here the pressure Pref is set equal to 1 GPa and introduced for convenience in order to express the 
burning coefficient G1 in sec-1 irrespective of the pressure exponents. Three other coefficients (pressure 
exponents n and k, and non-dimensional coefficient g), being varied, enable one to select a desirable 
form of Dn–K relationship. Equation (17) holds if the wave front pressure exceeds the threshold Pign 
else M1 is set to 0. 

 The equation set of the model comprises 10 equations for 12 variables. By transformation of 
the equations one may obtain the master equation of the standard form:  
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Two terms in numerator of the right part of the equation (18) represent heat release rate by chemical 
reaction and energy losses rate caused by lateral expansion, accordingly. The equation set is integrated 
from the shock front up to a singular sonic point at which the numerator and the denominator of the 
right part of the equation (18) simultaneously equal zero. The unique solution which begins at x=0 and 
passes through this singular point, defines an eigenvalue of the problem. It may be velocity Dn at a 
given curvature, or reverse. The solution is obtained by use of a numerical “shooting” technique. Fig. 
4 shows an example of the procedure. 
  

RESULTS OF ANALYSIS  
 

Numerical modeling carried out with use of one-term equation for reaction rates (at g = 0 in 
the equation (17)) and with variation of the pressure exponent results in Dn–K relationship which has 
one turning point at n ≥ 1.7 or the monotonously descending relationship with no turning points at the 
smaller values n. The Dn–K relationship with two turning points may be obtained with use of the two-
term equation (17) if n is nearby 1 and k above 2.5. By taking these values of the pressure exponents 
we have reproduced experimental data on D(d) relation including low velocity branch for three 
powdered HEs [3–4]. Figs. 5–7 show the obtained results. The input data comprising coefficients of 
EOS and reaction rate equation are listed in Tables 1 and 2, accordingly. The experimental data 
available for Tetryl demonstrate a strong effect of the particle size. We have numerically reproduced 
this effect by proportional change of the coefficient G1. 

With regards to the mechanism of explosive burning, coefficient G1 may be estimated as the 
product of the specific burning surface and the rate of layer-by-layer burning of HE at the reference 
pressure 1 GPa. We have taken values of the burning rate measured for sticks under lower pressures 
and extrapolated them with the pressure exponent equal 1. The specific burning surface is assumed to 
be equal to the specific surface of initial particles. The results of this simple estimation are shown in 
Table 2. One can see that the chemical reaction rates extracted by use of numerical modeling 
significantly exceed the values estimated by extrapolation.  
 Figs. 8–9 illustrate spatial profiles of variables along the charge axis as well as the front shape 
and pressures at the front calculated for LVD propagating with the wave velocity 1.85 km/s in the 
unconfined RDX charge of 16 mm in diameter. As it is typical of LVD, due to the relatively low 
reaction rate only 40 % of HE is consumed in the reaction zone before the sonic locus. Comparing the 
reaction zone length with the charge diameter or the radius of curvature and considering the flow tube 
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expansion, we have to conclude that the assumption of the model about the weakly divergent flow 
does not strictly hold. And although the results of our study correctly reflect real physical aspects of 
detonation and give proper qualitative understanding of the process, quantitative data for the 
coefficients of the reaction rate equation are to be elaborated. For this purpose more sophisticated 
models may be applied (for example, the approach presented in [18] or 2D gas-dynamic modeling).  
 

UNSTEADY EFFECTS 
 

Chemical reactions occurring in the LVD waves manifest themselves also in the course of 
transient processes. We may qualitatively illustrate possible effects and consider the evolution of a 
diverging spherical detonation by using Dn–K relationship with two turning points. 

According to Brun [19], the acceleration of a self-sustained spherical divergent detonation is 
given by the relation: 

 ])([22 ζ−= DKtrC
dt
dD

   (20) 

Here D is the local detonation velocity, trC  is the characteristic speed of transverse front waves, K(D) 
is the known function of the local detonation velocity, and ζ is the curvature of the front. With R being 
the local radius of the spherical detonation,  
 R/2=ζ     (21)  
Assuming for simplicity that 
  22 6.0 DCtr =     (22) 
we come to the following equation set for the trajectory of the spherical detonation:  

 DRDKtrC
dR
dD /]/2)([22 −=   (23) 

 D
dR
dt /1=     (24) 

with initial conditions at R = R0:  D = D0 , t = 0.  
Fig. 10 shows the calculation results for RDX of loose-packed density at various initial radius 

of the wave R0. Initial velocity D0 was constant and equal 4 km/s, that corresponds to the radius of 
curvature 7.8 mm defined from the available K(D) relationship. At R0 = 6 mm the wave develops 
almost without drop of velocity, and after several microseconds the level of normal detonation 
velocity is reached. At R0 = 2 mm, the detonation quickly failed because the initial curvature of the 
front is too large. At R0 = 2.2 mm the wave velocity also undergoes a sharp drop. However, due to 
contribution of slow reactions initiated behind the front of low-velocity wave, parameters of the wave 
holds above a critical level. After a 12 µs delay when radius of the wave front increases up to ~20 mm 
the wave abruptly accelerates up to the velocity of normal detonation. These results qualitatively 
reproduce the experimental effects observed by authors of [2, 6]. They investigated the powdered 
RDX initiated by cap or electrical discharge and observed significant delay to detonation and long run 
distance to detonation. During delay the wave propagates with average velocity nearby 2–3 km/s and 
then abruptly transits to normal detonation velocity. Up to now, these effects have no clear 
explanation. 

The similar effects observed in PBX are known as “delayed detonation” [7, 8]. Fig. 11 shows 
experimental data which demonstrate extremely long delay of detonation and run distance to 
detonation taking place in a narrow range of the amplitudes of entering wave. By taking into 
consideration the chemical reactions occurring at low velocity detonations, we can offer a new idea to 
highlight this phenomenon. And again we consider the evolution of a spherical diverging detonation 
by using the Dn–K relationship with two turning points. Earlier in [11] we have selected coefficients of 
EOS and coefficients of the reaction rate equation (17) by using for calibration the experimental data 
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on LVD obtained in strongly confined charges 16 mm i.d. of X1 (HMX/binder 96/4, density 1.823 
g/cm3) and its normal detonation performance (detonation velocity 8.77 km/s and critical detonation 
diameter 2 mm) [20]. The coefficients of the reaction rate equation are G1=0.0012µs-1, n=1.0, f=0.3 
and k=3.5. Fig 12 shows the resulting Z-shaped velocity–curvature relation, and Fig. 13 displays the 
evolution of detonation wave depending on the pressure amplitude P0 of initial wave (P0  is a known 
function of D0) with the initial radius R0 = 32 mm keeping constant. One may notice a qualitative 
agreement with the experimental data, specifically, the change of the prompt transition mode to a 
mode with 60-µs delay in the narrow 6.44–6.7 GPa interval of P0, a low-velocity stage propagating 
with nearby 2.5 m/s and a jump-like transition from the low velocity to the normal detonation mode. 

 
CONCLUSIONS 
 
According to experimental data available for both confined and unconfined high explosives, 

dependence of detonation velocity on charge diameter D(d) comprises two separate branches for low 
velocity and normal detonations. Low velocity detonation is a wave process governed by chemical 
reactions which occur under dynamic loading with low amplitudes of the order of 1 GPa. A correct 
consideration of these reactions is necessary for a progress of the detonation theory as well as for 
understanding transient effects of initiation and failure of a detonation. Our numerical analysis have 
revealed simple conditions at which the steady model of a non-ideal detonation can reproduce D(d) 
relation comprising two separate branches for low velocity and normal detonations observed 
experimentally. This form of D(d) relation stems from Z-shaped normal velocity – curvature 
relationship which, in turn, can be obtained if the pressure dependence of the reaction rate comprises 
two terms. Namely, the first term is responsible for the surface burning under pressures typical of 
LVD with the pressure exponent nearby 1, and the second term controls chemical conversion under 
normal detonation pressures and has the pressure exponent 2.5–3. By fitting coefficients of the 
reaction rate equation, we have numerically reproduced D(d) relation with two branches for several 
high explosives in unconfined charges of loose-packed density, including the particle size effect.  

We also applied the Z-shaped velocity–curvature relationship for considering unsteady 
delayed transient effects (including the so-called “delayed detonation”) which have been observed at 
shock initiation of explosive materials and have no clear interpretation. To demonstrate these effects a 
numerical modeling of the spherical divergent detonation is presented.  

Though modeling results are in good agreement with the experimental data, we estimate them 
as qualitative or illustrative rather than quantitative ones. The reason is that due to the low reaction 
rate peculiar to LVD, the reaction zone length can not be considered as negligibly small in comparison 
to the radius of curvature. As a consequence the assumption of weakly divergent flow which enables 
us to apply the simple classic procedure for the analysis does not strongly hold. Nevertheless, we 
believe that the results of our study give proper understanding of the phenomenon and will be useful as 
a basis for developing more sophisticated and adequate models. 
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TABLES AND FIGURES 
 
Table 1. Input data for coefficients of EOS  
 

Coefficients of Eq. (13), KEOS Coefficients of Eq. (14), GEOS HE 
ρ10, 
kg/m3 

e10, 
MJ/kg 

Г1 l B1, 
GPa 

e20, 
MJ/kg 

Г2 m B2 

RDX 1800 + 0.028 2.6 7.4 2.0 -5.0 0.35 3.23 0.59 
Tetryl 1730 + 0.068 1.65 7.45 1.09 -4.47 0.5 3.121 1.0841 
TNT 1650 - 0.276 0.74 6.9 1.366 -4.4 0.5 3.513 0.0473 
 

Table 2. The best fitting values of coefficients of the reaction rate equation (17) to reproduce 
experiments on effect of charge diameter on low velocity and normal detonations 

[3, 4] 
HE ρ0, 

kg/m3 
d0, 
mm 

G1 , 
µs-1 

n/g/k UP, m/s 
(1 GPa ) 

UP A0, 
µs-1 

TNT 950 0.4 – 0.63 0.04 1.0/0.37/3.0 0.43 0.005 
RDX 1000 1.0 – 1.6 0.061 1.0/0.38/2.5 1.14 0.0053 
Tetryl 900 0.4 – 0.63 

0.63 – 1.0 
1.0 – 1.6 

0.11 
0.085 
0.065 

0.8/0.26/2.7 0.57 0.0066 
0.0042 
0.0026 

*) Specific surface of grains: 00 /6 dA =  
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Fig. 1. Experimental data on low-velocity (LVD) and normal detonations (ND) in powdered TNT of 1000 kg/m3 in density 
[1]. Initiation by means of boosters producing different velocity of the input wave.  
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Fig.2. Example of Z-shaped normal velocity–curvature relationship with two turning points  
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Fig. 3. Example of calibration of the EOS coefficients. Circles are thermodynamic calculation by TDS, lines are 

calculations by equation (13).  
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Fig. 4. An example of “shooting” procedure 
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Fig. 5. Experimental and calculated detonation velocity – charge diameter relation for unconfined powder RDX  
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Fig. 6. Experimental and calculated detonation velocity – charge diameter relation for unconfined powder TNT  
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Fig. 7. Experimental and calculated detonation velocity – charge diameter relation for unconfined Tetryl with 

different particle size 
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Fig. 8. An example of spatial profiles of variables in the reaction zone of LVD along the charge axis  
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Fig. 9. Front shape and pressure along the shock front for LVD  
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Fig.10. Evolution of spherical detonation front in powdered RDX depending on initial radius. 
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Fig. 11. Effect of the entering shock pressure on the distance to detonation (Xd) and time to detonation 
(Td) in unconfined PBX [8]  
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Fig.12. The Z-shaped velocity – curvature relationship fitted for a model PBX 
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Fig 13. An illustrative example of fast and delayed evolution of a diverging spherical detonation in an unconfined charge of a 
model PBX with initial radius 32 mm depending on pressure amplitude P0 of initial detonation wave.  
 
 


