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Abstract—The effect of exothermic reactions on the gasdynamics of one-dimensional flow in a
nonsteady “burn-down’ zone which follows a plane detonation wave is considered. The dynamics of
secondary compression waves downstream of the C-J plane is calculated. Depending on the heat
release kinetics in the ‘““burn-down” zone the secondary compression wave is either transformed into
a shock wave which overtakes the primary detonation wave and changes its velocity abruptly, or
creates a subsonic flow region adjacent to the C-J plane and results in the smooth acceleration of
the detonation wave. The dwell times of low velocity C-J detonations are estimated for long and
short acting initiators. The results of the analysis are applicable at least qualitatively to a wide
variety of nonideal explosive systems.

Introduction

THE DETONATION velocity in many explosive systems under certain conditions
turns out to be substantially lower than the ideal thermodynamic value. The
apparent C-J plane (or surface) in so called nonideal detonation waves normally
corresponds to an intermediate stage of the reaction, i.e. some part of the
chemical energy stored in the explosive system is being released in the rear-
faction zone. The mechanism of nonideal detonations in the case when reacting
material is allowed to expand laterally has been discussed in numerous papers
(i.e. N. M. Kuznetsov, 1968; B. S. Ermolaev et al., 1976; R. F. Chaiken and J. C.
Edwards, 1976), and its main features are well known. There is another type of
nonideal detonations, those are the waves with nonmonotonous heat release (N.
M. Kuznetsov, 1968). One-dimensional or quasi-onedimensional detonation
waves with consecutive fast and slow reaction stages are observed in all types of
the explosive systems. Low velocity detonation (LVD) regimes in condensed
explosives have the ignition in hot spots and burning of the explosive material
before the moment of its fragmentation as a fast reaction stage and burn out of
the dispersed HE as a slow reaction stage. The slow reaction in heterogeneous
explosives is burning of less reactive explosive or fuel component (i.e. Metall). The
region of slow heat evolution exists also in detonation waves in sprays (burning of
remnants of droplets) and in gaseous systems with complicated Kinetics of the
reaction (e.g. in hydrocarbon-oxygen mixtures). The effective heating rate of gases
downstream of the detonation front in the case of nonmonotonous heat release
should comprise heat transfer between phases and heat losses as well and thus
under certain conditions it can change its sign in some regions of a flow.
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Two questions arise

What are the conditions under which the detonation wave with partial heat
release propagates steadily in a tube with rigid (or slightly deformable) walls, and
what kind of transient phenomena are to be expected if some part of chemical
energy is released downstream of the C-J plane in the zone of a rearfaction
wave.

According to experimental observations (e.g. A. N. Dremin et al., 1970) the
heat release in an extended zone downstream of the lead shock wave results
either in continuous acceleration of the detonation wave or in the generation of a
secondary shock wave in the expanding and reacting two- or one—phase flow.
The secondary shock wave eventually overtakes the lead shock. Steady-state
regimes of nonideal one-dimensional detonations have been observed in charges
of limited length and diameter. The stability of onedimensional LVD which are
characterized by a very small portion of the total energy released upstream of
the C-J plane has to be studied in more details. N. M. Kuznetsov (1968) has
shown that nonideal detonations are stable with respect to small linear dis-
turbances. However his analysis does not account for the nonlinear effects (e.g.
formation of secondary shock waves) downstream of the C-J plane (in burn
down zone). Thus the analysis of the LVD stability should be completed with
the consideration of a flow in the nonisentropic rearfaction wave and of an
interaction of nonlinear disturbances generated in this flow with the flow
upstream of the C-J plane.

This paper gives the analysis of gasdynamic phenomena in one-dimensional
flow of a reacting fluid downstream of the C-J plane. Using analytical solutions
the dynamics of secondary compression waves formation and their interaction
with the primary detonation wave is considered. An assumption is made that the
detonation wave always starts as a C-J wave with partial heat release, and the
rest of the chemical energy is evolved at a rate comparable with the rate of flow
parameters change in the rearfaction wave which follows the detonation wave.

Gasdynamics of one-dimensional flow in a burn-down zone of a detonation
wave. Let us consider the flow created by a movement of a plane piston in a
quiescent homogeneous fluid which is capable to react exothermically. The
piston trajectory is chosen in such a way that:

(1) the shock wave generated by the piston propagates at a constant velocity
at least for the period of time less than a certain value t¢j,

(2) the shock wave parameters are high enough to initiate the fast stage of
the chemical reaction,

(3) at t =t¢; the fast stage of the reaction is completed (heat release rate
turns out to be equal to zero), and there appears a sonic (with respect to the
detonation front) plane at the piston surface,

(4) further piston motion is accompanied with a slow heat release in the
burn-down zone.

The absence of shock waves in the burn-down zone would mean that for
t > tc; the wave configuration consisting of a lead shock wave and of a zone of
the fast reaction is propagating at a constant velocity D¢; and can be considered
as a CJ detonation with a heat release determined by the fast stage of the
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reaction. If D+ D¢; then a transient regime arises which finally results in the
unsupported detonation wave propagating at the velocity D¢;. Some aspects of
these regimes were discussed earlier (A. N. Dremin et al., 1970; B. S.
Ermolaev et al. 1976), however the transient phenomena of this type are not the
subject of concern in the analysis given below.

The governing equations for the flow can be written as follows:

s
d% Inplp? = P('Yp 1) CL?

The equation of state is
E =p/(y—1)p; v =Const. ¥))]

The boundary conditions at the front of strong shock and at the piston are same
as those used by H. M. Sternberg (1970) in the case of a plane flow. It is
convenient to characterize the flow parameters distribution downstream of the
lead shock using coordinate ¢ equal to time measured along the Lagrangian
particle path: ¢ =t —t,, where t; = x,/D is Lagrangian label for a particle path,
& =0 at the shock front and d/dt = 8/a¢.

The flow dynamics is evidently strongly dependent on Q as a function of
time. Here Q is an effective heat release which includes heat production due to
chemical reactions and heat losses. Only the waves with dQ/d¢ = 0 at least in one
point of the flow where Q >0 but Q# Q. are considered below. This point
corresponds to the completion of the first (fast) stage of the reaction (at £ = t¢y).
It can be shown that the solution D = D¢ where D¢y is calculated using
equations

'f.fg 0, Mgy=1 3)

is the only steady-state solution for 0 < £ < tc; where t¢; is defined for the first
maximum on the Q(£) curve.

Before to go to the analysis of what happens if the energy starts to evolve
again (with some time delay) at £ > t¢j, i.e. in the burndown zone of the wave
propagating at the velocity Dcj, it is necessary to characterize the behavior of
the flow parameters in the vicinity of the CJ plane.

Since the CJ point is simultaneously the head of the rearfaction wave the
derivatives dp/a¢, du/a¢ and dp/d¢ have discontinuity at this point. However p, u
and p themselves are continuous functions of time and space coordinate at this
point. The derivative (dQ/d¢)- upstream of the CJ plane is equal to 0 (see eqn 3).
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It is a function of time and flow parameters rather than their derivatives
therefore

(0Q/9¢)+ =0 C))

from the burn-down zone side, i.e. heat release rate must be continuous at the CJ
point. This conclusion although evident is important for the correct analysis of
gasdynamics in the burn-down zone. Equation (4) together with M2, = 1 defines
the boundary conditions at £ = t¢; for the burn-down zone.

It is not difficult to show that a steady nonideal detonation wave propagating
at the velocity D¢;, which corresponds to a partial heat release, can not be
realized in any piston flow if the net energy evolved both in the detonation and
burn-down zones exceeds the energy evolved before tc; only, ie. if Q=
Q- — Qs is positive. Let us consider for this purpose a selfsimilar solution which
is valid in the both zones (0 < £ <t and £ > t¢;). Since an assumption has been
made that D = D¢; = Const all the parameters for 0 < £ < t¢; are functions of ¢
only. The possibility of analytical continuation of the well known solution for
the steady detonation zone through the CJ plane into the burn-down zone using
the appropriate choice of the piston trajectory has been shown by Sternberg
(1970). Integrating the conservation eqns (1) one gets for the case of a strong
detonation wave (co’> Qg ):

p =pa(1=V(1-2(y’ - DQ(£)/D?)]

(5)
M =+/[(psD’/p — 1)]y].
The piston trajectory is given by the equation
% = o [ [1£V/(1-267 - DQ@IDY] d¢ ©)
Q(¢) is calculated using the kinetic equation
dQ/d¢ = F (¢, p,p, E) ™

with the initial condition ¢ =0; Q = 0.

The sign plus should be taken in the expressions for p and x, in the subsonic
detonation zone, and minus corresponds to the supersonic burn-down zone.
There are no other restrictions for the value of F in the burn-down zone besides
F(c)=0.

The physical meaning of this solution is based on the fact that at large
enough times any isentropical one-dimensional rearfaction wave becomes more
and more like a steady uniform flow. Hence the flow pattern nearby the nonideal
detonation wave asymptotically approaches the selfsimilar solution dependant
on ¢ only. Indeed expanding the parameters p, p and u in eqn (1) in Taylor series
nearby £ = t¢y. and then solving the resulting ordinary differential equations one
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gets the law according to which the pressure gradient reaches its selfsimilar
value (dp/dé)ss at £ =tcy:

op

= G2l e [GoupF (~G2] e 10] > G whenomana G2 <o

p
®

Here t, is the integration constant characterizing the value of dp/do¢|. at the
moment of the CJ plane origination, t, = 0 if the predetonation column length is
equal to 0.

The case of an endothermic process in the burn-down zone (Q; = Q.— Q¢y <
0, see Fig. 1a) gives a truly steady solution: the integral curve p(¢) (Fig. 1b,
curve 2) which corresponds to D = D¢; = \/(2(y>— 1)Qc¢;) (here Qc; is the largest
maximum value of Q) satisfies the boundary conditions at the shock front and at
& = tcy. The flow downstream of the CJ point does not change the parameters in
the detonation zone. The piston trajectory for this case is shown in Fig. 1(c). All
the values of D less than D¢y (curves 3 and 4 of Fig. 1b) result in flow choking
and generation of secondary shock waves in the burn-down zone (H. M.
Sternberg, 1970; B. S. Ermolaev et al., 1976). The waves with D > D¢; represent
supported detonations and are not of interest for present analysis (curve 1, Fig.
1b).

The case of an exothermic process in the burn-down zone (Q, > 0) (Fig. 2a)
is more interesting from the practical point of view. The integral curve for the CJ
wave propagating at a velocity Dcj;~ \/(Qmax,1) is marked as a curve 1 in Fig.
2(b). The pressure in the supersonic burn-down zone starts to rise when 9Q/a¢
becomes positive. This pressure rise results in flow choking (when p —pcy,
apla¢ >, M — 1 but aQ/a¢+ 0) at the piston when Q(§) = Q(£;) becomes equal
to Qmax: again. The secondary shock wave generated at the piston (Fig. 2c) at
t = t,, overtakes the primary detonation wave and change its velocity abruptly.

& &
Selfsimilar profiles: £=(y +1)P/p,0° x -1 diagram for @,<0

Fig. 1. Selfsimilar solution for Q,<0; (a) Q and Q profiles (b) dimensionless pressure
profile, and (c) x — ¢t diagram. Curve 1: D> D¢;; 2: D= Dg¢;; 3 and 4: D < D,.



562 B. A. Khasainov et al.

|/ (©

/(x=0w < t/(y+1)

Fig. 2. Selfsimilar solution for Q,> 0; (a) Q and Q profiles, (b) dimensionless pressure
profile, and (c) x—t wave diagram. Curve 1, D =/[2(y2~ 1)Qumax:]; Curve 2, D=
VI2(y* - HQ.].

Number 2 in Fig. 2(b) denotes the integral curve for the wave propagating at the
velocity Dcy2 ~ V/(Q-), corresponding to the largest maximum of Q(¢).

This selfsimilar asymptotic analysis shows that the detonation wave with
partial reaction completeness is truly stable only in the case when the kinetics of
heat release and losses provides the energy production profile at a very long time
after initiation having the largest maximum at the first stage of the reaction, i.e.
Q:=<0. Otherwise (Q,>0) the wave will propagate at a constant low velocity
only for a limited period of time.

Dynamics of secondary shock waves formation in the burn-down zone

In order to simulate the unsupported detonation wave propagation from the
closed end in a rigid tube one has to admit that the piston—which initiated the
detonation wave and the fast stage of the reaction—stops at t = tc; creating a
rearfaction wave, i.e. a nonsteady burn-down zone.

The conservation equations in the nonsteady burn-down zone can be in-
tegrated analytically using the perturbation technique if the energy evolved in
this zone exceeds Q¢ only slightly, that is if Q2/Qc; = €< 1. As shown by J. B.
Bdzil (1976) the condition €2 <1 allows to reduce the set of eqns (1) to only one
equation:

aw, ow, 1 iq_

ar ay  2y’ay ©)

where

2Dt —x).  _y+1 (DCJ

(y+ D1 y Wi v y+1 - u)/eDC]; q= (Q —QCJ)/GZQCJ.

T=ccitlel; y =
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This equation gives the asymptotic solution which is valid for the entire region
restricted by the CJ plane trajectory (which is assumed to be a straight line
x = Dgyt) and by the quiescent piston (x = 0). The boundary conditions at the CJ

plane are
y=0; w;=0; g=0; dq/dy=0. (10)

The solution obtained by Bdzil hardly could represent any practically interesting
case of nonideal detonation because he used the heat release function q(y)
having discontinuous derivative at the initial CJ plane, i.e. dQ/d¢|. ~ 3q/dy|+ ¥ 0.
That is why the detonation wave in his solution starts to accelerate without any
delay at t = 0.

If 3q/dy =0 the solution of eqn (9) represents the classical isentropic rear-
faction wave attached to the CJ plane of an ideal detonation wave.

In general q depends on 7 and y but for convenience we assume it
independent on 7 (otherwise the eqn (9) can be solved only numerically). This
assumption means that the heating rate is not affected by the change of flow
parameters in the burn-down zone. The purpose of the present paper is to
elucidate the main features of the process, therefore a simple expression for
q(y) has been chosen:

—A[l1+shn(y — yo)l/ch® n(y — yo); 0=< y =<2y,

q(y)= 72[
—2A+ B th> m(y —2yo) y >2yo (11)

where yo= 1/n arsh (1). Parameters A and B determine the amount of the heat
lost and/or gained in the burn-down zone, n and m characterize the rate of heat
dissipation and evolution. At the CJ plane (y = 0) eqn (11) gives dg/dy = 0, hence
the detonation zone (upstream of the CJ plane) will be stable at least for small
time interval 7. Figure 3 demonstrates the typical profiles of (Q — Qc¢s)/Qcs =
q(y)e’ for the case when D¢; =8 mm/us, y =3 and 1 =5 mm.

The solution of eqn (9) for 0 <y <2y,and A>0is:

_ 1 1+ Z shn(y— yo)
VA T Z - 12

T

21 )

Y~
-24 5

¥, mm

(Q-Q. /0., , %

Fig. 3. Typical heat release profiles in the burn-down zone for different values of the
parameters A, B, n and m (see eqn 11).
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where Z = w,’/A — 2 sh n(y — yo)/ch® n(y — yo). For y >2y,

1 V(=S)shm(y — yo2) -
m\/(_s)arsh VB -9 S=<0
T—-V= (13)
1 . V(S)shm(y — yo2)
m/(S) 2 T V(B - 5) §>0
where
S =B[1—-th>m(y — yo2)] — w%; % 1 arsh 1

VB -A-95VIT-24IB-9)

First we consider the net exothermic process in the burn-down zone (curve 1
in Fig. 3). In this case A =0, yo=0 and V = 0. For small ¥ one gets from eqn (13)

wi(y>0)=m+/(B) y ctgm\/(B) . (14)
The gradient of the particle velocity at the CJ plane can be expressed as follows:

ow; u
—_— = B P — .
ay |, m+\/(B) ctgm~/(B) ayl, (15)

Thus the rearfaction wave disappears and the flow in the vicinity of CJ plane
becomes subsonic with respect to the front (u <uc) when 7=1,/2=
w/2m~/(B). The secondary shock wave arises at T = 1, (When du/dy - «). For
the case shown in Fig. 4 t.,, = 15 us.

If > 7, the solution with D = Const is impossible, the compression wave
generated in the burn-down zone penetrates through the CJ plane and ac-
celerates the detonation wave smoothly.

If the heat losses from the gas phase dominate for some period of time the
function q(y) has an intermediate minimum (curves 2-5 in Fig. 3). Figure 5
illustrates the corresponding particle velocity profiles in the burn-down zone.

t=3us 6 us Ous 12 us 15 us

o 25 50 75 100 125
X, mm

Fig. 4. Dynamics of secondary compression wave evolution in the burn-down zone
when the process is exothermic.
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For curve 5 Q;<0. One can see that at any point of the flow the gas is moving
slower than at the CJ plane and the flow remains supersonic everywhere in the
burn-down zone. Q, >0 for curves 2—4 in Fig. 3. Additional heating the gaseous
products results in the secondary compression wave formation, and the flow in
some region becomes subsonic. The larger are the burn-down zone heat release
Q; and the rate of its production the earlier arises the region of the subsonic
flow. The gas velocity gradient at the leading edge of such a compression wave
approaches infinity asymptotically (at 7 —» ), that is the detonation wave might
propagate at a constant velocity D¢; for an unlimited time period. However
there are two causes which must limit this time period (or a dwell time of a
steady nonideal detonation wave). The first is the dependence of the exothermic
reaction rate on flow parameters, and the second is the gasdynamic instability of
the flow.

The behavior of small perturbations of the flow velocity in the burn-down
zone dw, is determined by the equation

——T +wi——+éw;—=0 (16)

derived from the eqn (9) when substituting w = w, + 8w, and linearizing eqn (9) with
respect to w,/w;, < 1. Here w; is the nonperturbed solution of eqn (9) determined
by eqns (12) and (13). At the head of the secondary compression wave w; =0, and
hence

w: ]_3w1 du

|dwi| = Const exp [— 3y o _du a7

Thus disturbances of finite amplitude which may arise locally in the burn-
down zone due to the fluctuations in the reaction rate are enhanced on their way
to the CJ plane and overtake the latter. The complex consisting of a detonation
wave and burn-down zone becomes more unstable if the growth of the secondary
compression wave amplitude accelerates the exothermic reaction.

The steady propagation of a nonideal detonation is possible up to the moment

X, mm

Fig. 5. Dynamics of secondary compression wave evolution when the process is
endothermic in some part of the flow, (2-5)dq/dy changes its sign Q22> Q23> Q24>0;
Q25<0; (6) Q; =0, isentropic rearfaction wave.
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when the secondary compression wave with infinite pressure gradient arrives at
the CJ plane. Before this happens a region of subsonic flow arises in the
rearfaction wave. In the case when the endothermic stage in the burn-down zone
is absent (see Fig. 3, curve 1) the flow adjacent to the CJ plane becomes
subsonic at the moment 7 = 7.,/2 (see eqns 14 and 15).

Estimation of the dwell-time of a steady nonideal detonation wave

The dwell-time of a nonsteady nonideal detonation wave t; is a sum of two
time intervals: t. is for the secondary shock to be formed and t, for the
secondary shock to overtake the primary detonation wave. The latter can be
evaluated assuming that in the secondary shock wave the chemical energy stored
in the substance which enters its front is released immediately. The time interval
t.,- can be estimated for an arbitrary heat release-time history.

The flow region to be considered is restricted like in the previous section by
the straight trajectory of the CJ plane x = D¢t and by the quiescent piston
x=0.

Rearrangement of eqns (1) yields:

%3? (y l)dlnp 7(7 1)(3? (18)

Integrating this equation along the piston trajectory and using the initial
conditions at the piston: c¢(0, 0)= Dcj/2; p(0, 0)=p,=[pD%/(y+1)]
x[(y + D2y Q(0, 0) = Qcy; p,(0, 0)=4yp/D%;, where p, and p, are the
pressure and density at the wall in the isentropic rearfaction wave attached to an
ideal strong detonation wave (K. P. Stanyukovich, 1971). Thus we obtain the
relation between ¢ and AQ:

" todd
&0, = D2+ vy - D[ae - [ p 40P at ] (19)

where AQ = Q(0, t)— Qc¢y.

If the expansion of the fluid which results in the secondary wave generation
is due to the reaction occurring in the region adjacent to the piston, the last term
in eqn (19) can be approximated as follows:

Yy - l)[AQ—fO[ d“/"’dt] y - 1)AQ (20)

where 1<y <vy. The extremes in this inequality are: y for case of isobaric
expansion of the reacting fluid and 1 for the isochoric process.
After introdacing the average ¥ substitution of eqn (20) into eqn (19) yields:

c(0.t)= \/[(ch/z)z“‘%(')’_l)(Q_QCI)] 2n
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and

Mo, 0=21\[1+5 2 @iQa - 1) @)

If at some moment ¢, c(0, t) becomes more than D¢; due to heat evolution
nearby the piston, then M (0, t) becomes less than 1. This means that a
secondary shock wave must arise at some distance from the piston due to the
coalescence of characteristics. This shock wave prevents the formation of
subsonic flow at the piston. The upper limit for the time of this secondary shock
formation can be estimated using the equation:

MO.t)=10rQ0, 1) = Qu[ 1+ X2 D= 4+70e. @)

This criterion of secondary shock formation time is quite different from that
derived in Section 2. This is due to the difference in flow parameters in the
burn-down zone. Equations (23) represents the case of an initiator with a very
short action time, i.e. the case of a very steep rearfaction wave, and the process
considered in Section 2 corresponds to a long lasting initiator. If the piston
trajectory in the burn-down zone is defined by eqn (6) the time of steady
propagation of the detonation wave tq= ¢, + t, is equal to 2.0 us and 2.5 us for
energy release profiles 3 and 4 respectively (Fig. 3). If the piston stops at the
moment of CJ plane formation then t. only is equal to 16 us and 23 us for the
same heat release profiles.

Thus the flow expansion downstream of the CJ plane strongly affects the
time interval required for the secondary shock formation.

Equation (23) and results of the previous paper (Ermolaev et al., 1976) are used
to estimate t., and L., for LVD in PETN charges confined in slightly deformable
tubes. For short acting initiator and LVD propagating at the velocity 3 mm/us
neglecting the heat losses due to the expansion of the confinement in the
burn-down zone we obtain ¢, = 60 us and L., = 300 mm. Since the ¢ is an upper
estimated value the above numbers should be considered as approximate ones
but of the right order.
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Appendix
Nomenclature
¢ =/ (yplp)
D
E=pl(y—-1)p
M =(D—u)lc
1
L.,
p
pcs = poDEsl(y +1)
P =plpcs
Q
QCJ
Q-
Q2= Qx»—Qqy

B. A. Khasainov et al.

sonic velocity

shock or detonation wave
velocity

internal energy

flow Mach number

thickness of the primary
detonation zone

steady propagation dis-
tance of the nonideal
detonation

pressure

pressure at the CJ plane

reduced pressure

energy evolved
reacting flow

energy released at the CJ
plane

final net heat release

heat release in the burn-
down zone

time

time to a secondary shock
wave formation

in the

123

t

u
ucy = Dey/(y + 1)

wi

Xp

v
€= Q2/Qcs
p
T

dwell time of a steady

noni-eal detonation
wave

time required for the
secondary shock to

overtake the detonation
wave
Lagrangian label
particle path
particle velocity
particle velocity at the CJ
plane
nondimensional
velocity, eqn (9)
space coordinate
piston trajectory
dimensionless
coordinate
specific heat ratio C,/C,
small parameter
density
reduced time, eqn (9)

for a

particle

space
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