ON HEAT FLUX MEASUREMENTS OF LOCALLY HETEROGENEOUS SELF-IGNITION OF COMBUSTIBLE MIXTURES BEHIND A SHOCK WAVE

M. A. Kotov^{1,2}, P. V. Kozlov², G. Ya. Gerasimov², V. Yu. Levashov², N. G. Solovyov¹, A. N. Shemyakin¹, M. Yu. Yakimov¹, V. N. Glebov³, G. A. Dubrova³, and A. M. Malyutin³

¹Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1 Vernadskogo Prosp., Moscow 119526, Russian Federation

²Institute of Mechanics, M.V. Lomonosov Moscow State University, 1 Michurinsky Prosp., Moscow 119192, Russian Federation

³Institute on Laser and Information Technologies of the Russian Academy of Sciences, National Research Center "Kurchatov Institute," 1 Svyatoozerskaya Str., Shatura, Moscow Region 140700, Russian Federation

Abstract: An experimental study was conducted to register the heat flux from ignition of shock-heated gaseous mixtures using a thermoelectric detector. The efficiency of the method was demonstrated using self-ignition of propane—air, propane— and propylene—oxygen—argon mixtures behind a reflected shock wave. Time dependences of signals from a piezoelectric pressure sensor, a thermoelectric detector, and optical channels configured to record the radiation of electronically excited radicals were analyzed. The zones of locally heterogeneous self-ignition and combustion of gas mixtures were shown. The possibility of measuring short ignition delay times (microseconds and less) was demonstrated.

Keywords: heat flux; combustible mixture; ignition delay time; propane; propylene; thermoelectric detector

DOI: 10.30826/CE25180206

EDN: LGYFAX

Figure Captions

Figure 1 Schematic of shock tube end-wall section with a projection of the receiving apertures of the devices used: spectral measurement and optical recording devices; TD – thermoelectric detector; DD – pressure sensor; OF – optical filter; OS – optical system; and PMT – photomultiplier tube. Dimensions are in millimeters

Figure 2 Readings of DD and TD in experiments #1 (black curves) and #2 (grey curves) [12]: $\varphi = 0.5$ (2.1% C₃H₈/20.56% O₂/77.34% N₂); temperature of the propane–air mixture behind the reflected shock wave is 1620 and 1644 K, respectively; shock wave speed is 1276 and 1289 m/s, respectively; initial pressure in the low pressure chamber (LPC) is 200 mbar; and 0 μ s is the arrival of the shock wave at the end wall

Figure 3 Time histories of pressure (DD), heat flux (TD), and intensity of OH^{*} radical emission (OS and OF) recorded during self-ignition of stoichiometric ($\varphi = 1.0, 4.2\% C_3 H_8 / 20.12\% O_2 / 75.68\% N_2$) propane–air mixture [12]. Temperature behind the reflected shock wave is 1670 K; initial pressure in the LPC is 170 mbar; shock wave velocity is 1302 m/s; and 0 μ s is the arrival of the shock wave at the end-wall

Figure 4 Readings indicating self-ignition of the propane–oxygen–argon mixture ($\varphi = 2.5$, 2% C₃H₈ / 4% O₂ / 94% Ar) behind the incident shock wave: temperature behind the reflected shock wave is 7045 K; initial pressure in the LPC is 200 mbar; shock wave velocity is 1486 m/s; and 0 μ s is the arrival of the shock wave at the end-wall

Figure 5 Nonstationary self-ignition of a propylene–oxygen–argon mixture ($\varphi = 1.9$, $1.5\% C_3 H_6 / 3.5\% O_2 / 95\% Ar$): temperature behind the reflected shock wave is 2457 K; pressure in the LPC is 360 mbar; shock wave Mach number is M = 3.1; and 0 μ s is the arrival of the shock wave at the end wall

Acknowledgments

The work was implemented within the state assignment of the Lomonosov State University and the Ministry of Science and Higher Education of the Russian Federation No. 124012500440-9 and within the state assignment of the National Research Center "Kurchatov Institute."

References

- Hanson, R. K., and D. F. Davidson. 2014. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. *Prog. Energ. Combust.* 44:103–114.
- 2. Igra, O., and F. Seiler, eds. 2016. *Experimental methods of shock wave research*. Springer. 488 p.
- 3. Reyner, P. 2016. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations. *Prog. Aerosp. Sci.* 85:1–32.

GORENIE I VZRYV (MOSKVA) – COMBUSTION AND EXPLOSION 2025 volume 18 number 2

- 4. Tian, Ye, S. Yang, B. Xiao, *et al.* 2019. Investigation of ignition characteristics in a kerosene fueled supersonic combustor. *Acta Astronaut.* 161:425–429.
- Gautam, Ch., D. Yuvarajan, H. Wei, *et al.* 2020. Hydrogen fuel in scramjet engines — a brief review. *Int. J. Hydrogen Energ.* 45(33):16799–16815.
- Yang, K., Yu Pan, Z.-G. Wang, *et al.* 2020. Experimental investigation of the ignition characteristics of vaporized RP-3 kerosene in supersonic flow. *Acta Astronaut.* 174:1– 10.
- Smirnov, N. N., O. G. Penyazkov, K. L. Sevrouk, *et al.* 2018. Onset of detonation in hydrogen-air mixtures due to shock wave reflection inside a combustion chamber. *Acta Astronaut.* 149:77–92.
- Elkarous, L., F. Coghe, M. Pirlot, and J. C. Govinval. 2013. Experimental techniques for ballistic pressure measurements and recent development in means of calibration. *J. Phys. Conf. Ser.* 459:012048.
- Tereza A. M., S. P. Medvedev, and V. N. Smirnov. 2019. Experimental study and numerical simulation of chemiluminescence emission during the self-ignition of hydrocarbon fuels. *Acta Astronaut*. 163(A):18–24.
- Kotov, M. A., A. N. Shemyakin, N. G. Solovyov, *et al.* 2021. Performance assessment of thermoelectric detector for heat flux measurement behind a reflected shock of low intensity. *Appl. Therm. Eng.* 195:117143.
- Kotov, M. A., N. G. Solovyov, A. N. Shemyakin, *et al.* 2024. O printsipakh vozniknoveniya termoeds pri registratsii termoelektricheskim detektorom teplovykh potokov v impul'snom gazodinamicheskom eksperimente [On the principles of thermoemf arise during heat flux registration by a thermoelectric detector in a pulse gas dynamic experiment]. *Physical-Chemical Kinetics Gas Dynamics* 25(3):49–68.

- Kotov, M. A., P. V. Kozlov, G. Ya. Gerasimov, *et al.* 2023. Thermoelectric detector application for measuring the ignition delay time in a shock heated combustible mixture. *Acta Astronaut.* 204:787–793.
- Kozlov, P.V., M. A. Kotov, G. Ya. Gerasimov, *et al.* 2024. Experimental study of the ignition of a stoichiometric propylene–oxygen–argon mixture behind a reflected shock wave. *Russ. J. Phys. Chem. B* 18(4):1019–1024.
- Ninnemann, E., B. Koroglu, O. Pryor, *et al.* 2018. New insights into the shock tube ignition of H₂/O₂ at low to moderate temperatures using high-speed end-wall imaging. *Combust. Flame* 187:11–21.
- Luong, M. B., and H. G. Im. 2021. Prediction of ignition modes in shock tubes relevant to engine conditions. *Engines and fuels for future transport*. Eds. G. Kalghatgi, A. K. Agarwal, F. Leach, and K. Senecal. Energy, environment, and sustainability ser. Singapore: Springer. 369–393.
- Gaseq: A Chemical Equilibrium Program for Windows. Available at: http://www.gaseq.co.uk/ (accessed March 20, 2025).
- Kotov, M. A., N. Solovyev, V. Glebov, *et al.* 2023. Pulse thermal load for thermoelectric detector calibration. *St. Petersburg State Polytechnical University J. Physics Mathematics* 16(S1.1):472–477.
- Kotov, M. A., P.V. Kozlov, V. Yu. Levashov, *et al.* 2023. Registration of radiative heat flux in a shock tube using a thermoelectric detector. *Tech. Phys. Lett.* 49(9):34–36.
- Filippov, F.V., M.A. Kotov, N.G. Solovyov, *et al.* 2024. Osobennosti kalibrovki termoelektricheskogo detektora s ispol'zovaniem impul'snogo lazernogo vozdeystviya [Calibration features of a thermoelectric detector using pulsed laser exposure]. *Tech. Phys. Lett.* 50(23): 50–53.

Received November 29 2024 After revision February 10, 2025 Accepted February 18, 2025

Contributors

Kotov Mikhail A. (b. 1988) — senior research scientist, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1 Vernadskogo Prosp., Moscow 119526, Russian Federation; senior research scientist, Institute of Mechanics, M. V. Lomonosov Moscow State University, 1 Michurinsky Prosp., Moscow 119192, Russian Federation; kotov@ipmnet.ru

Kozlov Pavel V. (b. 1958) — senior research scientist, Institute of Mechanics, M. V. Lomonosov Moscow State University, 1 Michurinsky Prosp., Moscow 119192, Russian Federation; kalevala@mail.ru

Gerasimov Gennady Ya. (b. 1949) — leading research scientist, Institute of Mechanics, M. V. Lomonosov Moscow State University, 1 Michurinsky Prosp., Moscow 119192, Russian Federation; gerasimov@imech.msu.ru

Levashov Vladimir Yu. (b. 1969) — head of laboratory, Institute of Mechanics, M. V. Lomonosov Moscow State University, 1 Michurinsky Prosp., Moscow 119192, Russian Federation; vyl69@mail.ru

Solovyov Nickolay G. (b. 1955) — leading research scientist, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1 Vernadskogo Prosp., Moscow 119526, Russian Federation; lantan.ltd@mail.ru

Shemyakin Andrey N. (b. 1959) — senior research scientist, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1 Vernadskogo Prosp., Moscow 119526, Russian Federation; shemyakin@lantanlaser.ru

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2025 volume 18 number 2

Yakimov Mikhail Yu. (b. 1961) — leading research scientist, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1 Vernadskogo Prosp., Moscow 119526, Russian Federation; yakimov@lantanlaser.ru

Glebov Vladislav N. (b. 1949) — senior research scientist, Institute on Laser and Information Technologies of the Russian Academy of Sciences, National Research Center "Kurchatov Institute," 1 Svyatoozerskaya Str., Shatura, Moscow Region 140700, Russian Federation; glebovvn@ilit.ru

Dubrova Galina A. (b. 1962) — research scientist, Institute on Laser and Information Technologies of the Russian Academy of Sciences, National Research Center "Kurchatov Institute," 1 Svyatoozerskaya Str., Shatura, Moscow Region 140700, Russian Federation; dgala@list.ru

Malyutin Andrey M. (b. 1963) — research scientist, Institute on Laser and Information Technologies of the Russian Academy of Sciences, National Research Center "Kurchatov Institute," 1 Svyatoozerskaya Str., Shatura, Moscow Region 140700, Russian Federation; ammaliutin@rambler.ru