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Abstract: Test fires of a modified rotating detonation engine (RDE) annular combustor operating on the methane–
oxygen mixture have been conducted. Compared to the original RDE combustor tested in 2018, it was modified
in terms of changing the scheme of combustor-wall water-cooling, the positions of ports for sensors, and the
shape of the supersonic nozzle. The stable operation process with a single detonation wave continuously rotating
in the annular gap with the velocity of ∼ 1900 m/s (rotation frequency of ∼ 6 kHz) has been obtained in the
wide range of flow rates of fuel components. This is the important distinguishing feature of the present RDE
combustor as compared to the analogs known from the literature, which usually exhibit the increase in the number
of simultaneously rotating detonation waves with the increase in the flow rates of fuel components. Compared with
the original RDE combustor, the maximum duration of operation and the specific impulse on the sea level have
been increased from 1 to 30 s and from 250 to 277 s, respectively. The thermal states of all heat-stressed elements
of the RDE construction are obtained: the maximum heat fluxes are registered in the cooling jackets of the central
body and the outer wall of the combustor and heat losses in the cooling system increase with an increase in the
average pressure in the combustor. The maximum value of the average heat flux over 20 MW/m2 was achieved on
the outer wall of the combustor. The average heat flux into the outer wall of the combustor was approximately 20%
higher than into the central body. The average heat flux into the nozzle was several times lower than similar values
for the outer wall and the central body of the combustor. The total heat losses into the water-cooled walls of the
combustor reached about 10% of the total thermal power of the combustor.
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Figure Captions

Figure 1 Schematic (a) and photograph (b) of an RDE combustor

Figure 2 Video frames of test fires #4 (a), #5 (b), and #6 (c) during normal operation of the RDE combustor

Figure 3 Video frames of test fire #6 at the moment of burnout of the outer wall of the RDE combustor (a) and after the
emergency shutdown of fuel supply (b)

Figure 4 Measured time histories of oxygen and methane pressures at the inlet of the RDE combustor: (a) test fire #4; (b) #5;
and (c) test fire #6 (STOP corresponds to an emergency shutdown of fuel supply)

Figure 5 Measured time histories of the thrust produced by the RDE combustor: (a) test fire #4; (b) #5; and (c) test fire #6
(STOP corresponds to an emergency shutdown of fuel supply)

Figure 6 Fragments of records of the pressure pulsation sensor in the RDE combustor at the beginning (top), in the middle
(center), and at the end (bottom) of test fires #5 (a) and #6 (b)

Figure 7 Fourier analysis of the record of pressure pulsation sensor in test fires #5 (a) and #6 (b)

Figure 8 Measured time histories of the cooling-water temperature at the outlet of the cooling circuits of the central body,
combustion chamber, and nozzle in test fires #4 (a), #5 (b), and #6 (c)

Figure 9 Comparison of the dependencies of the specific impulse on the average pressure in the RDE combustor obtained in
the present work (1) and in [4] (2)

Figure 10 Video frames of test fire #6: (a) normal operation; (b) burnout of the combustor wall with water entering the combustor
and steam cloud formation; (c) burnout of the cooling circuit of the outer wall of the RDE combustor; and (d) emergency
shutdown

Figure 11 Photographs of the destruction of the RDE combustor after emergency test fire #6: (a) top view; and (b) side view
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Table Captions

Table 1 List of measured parameters

Table 2 Main results obtained in test fires #4, #5, and #6

Table 3 Data on the thermal state of the walls of the RDE combustor
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