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Abstract: The article presents an experimental proof of the possibility of shock-to-detonation transition in a two-
phase mixture of liquid triethylaluminum (TEA, Al(C2H5)3) — a pyrophoric material reacting with water — and
superheated steam in a shock tube. It is shown that fine synchronization of TEA injection into the superheated

steam flow with the arrival of a decaying shock wave leads to its amplification with subsequent propagation at an
almost constant velocity of 1500–1700 (at a relatively low TEA injection dose) and 2000–2300 m/s (at a relatively
high TEA injection dose) in the tube during a certain time interval. These velocity levels are consistent with
thermodynamic calculations of the detonation velocity in fuel-lean and near-stoichiometric TEA – superheated
steam mixtures, respectively. When a large dose of TEA is introduced, the pressure profiles in the pressure wave
resemble the pressure profiles in the detonation waves propagating in gaseous and two-phase fuel–air mixtures.
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Figure Captions

Figure 1 Schematic (a) and photograph (b) of the shock tube: P1–P8 — pressure sensors; and F3–F5 — optical sensors.
Dimensions are in millimeters

Figure 2 Photographs of n-dodecane sprays in open air in one experiment (Vf = 2.5 ml) at different times after the start of
injection: (a) 4.8 ms; (b) 7; and (c) 10 ms

Figure 3 Photographs of kerosene sprays in open air in one experiment (Vf = 10ml) at different times after the start of injection:
(a) 10 ms; (b) 20; and (c) 30 ms

Figure 4 States of superheated steam behind shock waves in experiments at TLPC = 415± 5 K and PLPC = 0.1MPa

Figure 5 Measured dependences of the shock wave velocity on the traveled distance in experiments with similar initial conditions.
The working gas is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1MPa, and PHPC = 0.34MPa). The working fluids are
TEA, n-dodecane, and water. The dose of the working fluid is Vf = 2.5 ml. The delay in shock wave arrival is 4 ≤ τS ≤ 5 ms.
The vertical dash-dotted line corresponds to the position of the working fluid atomizer in the low-pressure chamber (LPC)

Figure 6 Examples of records by pressure sensors P3–P5 (solid curves) and optical sensors F3–F5 (dotted curves) in
an experiment with TEA injection. The working gas is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1 MPa, and
PHPC = 0.34MPa). The working fluid is TEA. The dose of the working fluid is Vf = 2.5ml. The delay in shock wave arrival is
4 ≤ τS ≤ 5ms

Figure 7 Measured dependences of the shock wave velocity on the traveled distance in experiments with similar initial conditions.
The working gas is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1 MPa, and PHPC = 0.34 MPa). The working fluid is
TEA. The working fluid dose is Vf = 10ml. The shock wave arrival delays are τS = 25.6 and 30.8 ms. The vertical dash-dotted
line corresponds to the position of the working fluid atomizer in the LPC
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Figure 8 Examples of records by pressure sensors P1–P8 (black curves) and optical sensors F3–F5 (grey curves) in an experiment
with TEA injection. The working gas is superheated steam (TLPC = 415± 5K, PLPC = 0.1MPa, and PHPC = 0.34MPa). The
working fluid is TEA. The working fluid dose is Vf = 10ml. The delay in the shock wave arrival is τS = 30.8ms

Figure 9 Calculated (curves [7]) and measured (gray stripes) values of the detonation velocity in mixtures of TEA with
superheated steam at P0 = 0.1MPa, T0 = 400K, and TEA doses of Vf = 2.5 (a) and 10 ml (b): signs — estimated values of the
fuel-to-oxidizer equivalence ratio � under the experimental conditions
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