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Abstract: The effect of H2 and CO additives on the formation of soot nuclei and soot particles during the pyrolysis
of ethylene and methane in experiments behind reflected shock waves is considered. A direct comparison of the
experimental results obtained in the shock tube with the results of kinetic simulations of the soot formation process
according to the kinetic model of soot formation developed by the present authors has been carried out. Comparison
of experiments and simulations has shown a significant decrease in the volume fraction and soot yield during
pyrolysis of ethylene and methane when hydrogen is added to the reaction mixture. A detailed kinetic mechanism
of the influence of hydrogen on the soot formation process has been established. The presence of hydrogen leads
to a noticeable decrease in the concentration of soot nuclei and soot particles, without changing the mechanism of
their surface growth and the induction period of the soot formation process. When CO is added, it is not involved
in the chemical mechanism of soot formation but acts only as a diluent gas, without affecting the soot yield.
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Figure Captions

Figure 1 Experimentally measured in [3] (1) and calculated by the authors using a unified kinetic model of soot formation [4] (2)
time dependences of the soot volume fraction for mixtures of 2%C2H4 +Ar (T5 = 1993 K and p5 = 4.65 bar) (a),
2%C2H4 + 0.5%H2 +Ar (T5 = 1994 K and p5 = 4.48 bar) (b), and 2%C2H4 + 1%H2 +Ar (T5 = 1995 K and p5
= 4.58 bar) (c)

Figure 2 Experimentally measured in [3] (filled signs) and calculated using a unified kinetic model of soot formation [4]
(empty signs), temperature dependences of the soot yield for a reaction time of 2 ms for mixtures of 2%C2H4 +Ar (1),
2%C2H4 + 0.5%H2 +Ar (2), and 2%C2H4 + 1%H2 +Ar (3): curves — approximations of experimental points

Figure 3 Calculated temporal dependences of the concentration of soot particle nuclei (1) and total concentration of particles
(nuclei + soot particles) (2) for mixtures of 5%C2H4 +Ar (a) and 5%C2H4 + 10%H2 +Ar (b), T5 = 2300 K, p5 = 5 bar, and
reaction time of 2 ms

Figure 4 Contribution of the main reactions of formation and consumption of soot particle nuclei CH[ ] for mixtures of
5%C2H4 (a) and 5%C2H4 + 10%H2 (b) in argon at temperature and pressure behind the reflected shock wave T5 = 2300 K
and p5 = 5 bar

Figure 5 Calculated temporal dependences of the concentration of soot particle nuclei (1) and total concentration of particles
(nuclei + soot particles) (2) for mixtures of 10%CH4 +Ar (a) and 10%CH4 + 10%H2 +Ar (b), T5 = 2600 K, p5 = 5 bar, and
reaction time of 2 ms

Figure 6 Contribution of the main reactions of formation and consumption of soot particle nuclei CH[ ] for mixtures of
10%CH4 +Ar (a) and 10%CH4 + 10%H2 +Ar (b) at T5 = 2600 K, p5 = 5 bar, and reaction time of 2 ms
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