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Abstract: The results of three-dimensional calculations of P. Magre et al. experiment (ONERA) with premixed
methane–air combustion in a model channel with backward step are presented. The calculations are carried out

with EPaSR (Extended Partially Stirred Reactor) model to take into account the first channel of turbulence–
chemistry interaction. The problems caused by transition to non-Boussinesq models of DRSM class are discussed in
the article. The article offers a solution to the problem caused by the absence of turbulent kinetic energy production
in the flame front which arises in calculations with DRSM models. The significant influence of non-Boussinesq
models on the flow structure is demonstrated. The influence of the transversal inhomogeneity of the velocity field
on the flame flashback formation region is highlighted. The application of the two-way turbulence–chemistry
interaction model EPaSR-PrOm shows that the side walls heat exchange severely influences the field of turbulent
Prandtl number decreasing its value compared to that of the two-dimensional calculation.
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Figure Captions

Figure 1 The mesh for the computation domain

Figure 2 Comparison of turbulent kinetic energy fields in two-dimensional simulations of ONERA experiment: (a) EPaSR
model with SSG-LRR-ω; and (b) EPaSR model with BSL k–ω

Figure 3 Improved instantaneous field of turbulent kinetic energy in the three-dimensional simulation of ONERA experiment
with EPaSR and SSG-LRR-ω with pressure dilatation term correction

Figure 4 Comparison of instantaneous temperature isosurfaces colored by vertical velocity: (a) EpaSR with Baseline k–ω and
the PrOm model; and (b) EpaSR with SSG-LRR-ω taking into account dilatation correction

Figure 5 Comparison of temperature profiles in two-dimensional (solid curves) and three-dimensional (dashed curves)
calculations with the EPaSR Baseline k–ω (upper row), EPaSR PrOm Baseline k–ω (lower row, black curves), and EPaSR
SSG-LRR-ω models (lower row, grey curves) with experiment (signs): (a) x = 0.1m; (b) 0.25; and (c) x = 0.34m

Figure 6 Comparison of transversal velocity and streamlines in calculation with EPaSR Baseline k–ω (a) and EPaSR
SSG-LRR-ω (b) models

Figure 7 Connection between transversal vortices and transversal inhomogeneity of the flame front caused by regions of flame
flashback in calculation with EPaSR SSG-LRR-ω

Figure 8 The field of turbulent Prandtl number in two-dimensional (a) and in three-dimensional (b) calculations
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