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Abstract: The possibility of shock wave amplification in a two-phase mixture of superheated steam and liquid
triethylaluminum (TEA, Al(C2H5)3) is demonstrated experimentally for the first time. Fine synchronization of
the moment of TEA injection in the flow of superheated steam with the arrival of an attenuating shock wave is
shown to ensure shock wave propagation with a nearly constant speed of 1500–1700 m/s in a tube during a certain
time interval. This speed level is consistent with the thermodynamic calculation for the detonation speed in
the fuel-lean superheated steam – TEA mixture. Since the pressure profiles recorded in the experiments do not
generally correspond to the pressure profiles relevant to detonation waves, it is still premature to assert that the
shock-to-detonation transition is obtained.
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Figure Captions

Figure 1 Calculated dependence of the detonation speed DCJ on the fuel-to-steam equivalence ratio � for the superheated
steam – TEA mixture at P0 = 0.1MPa and T0 = 400 (1) and 500 K (2) [7]

Figure 2 Schematic of the experimental setup (a) and its main element, the shock tube (b). Dimensions are in millimeters

Figure 3 Schematic (a) and photograph (b) of the fluid atomizer

Figure 4 Photographs of water (a) and TS-1 kerosene (b) sprays at 3 (a) and 4.4 ms (b) after the synchronizing signal, respectively

Figure 5 Example of records of pressure sensors P1–P8 (solid curves) and optical sensors F3–F5 (dotted curves) in an
experiment without injection of working fluid. The working medium is superheated steam (steam temperature in the low pressure
chamber (LPC) is TLPC = 445 ± 5 K, steam pressure PLPC = 0.1 MPa, and initial pressure in the high pressure chamber
(HPC) is PHPC = 0.24MPa). The countdown of time is from methane–oxygen mixture ignition in the HPC

Figure 6 Measured dependences of the shock wave velocity on the traveled distance in five experiments with the same initial
conditions. Working medium is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1MPa, and PHPC = 0.34MPa)

Figure 7 Measured dependences of the shock wave velocity on the traveled distance in experiments with the same initial
conditions. The working medium is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1MPa, and PHPC = 0.34MPa). The
working fluids are TEA, n-dodecane, and water. The time delay of shock wave arrival is 4 ≤ τS ≤ 5ms. The vertical dashdotted
line corresponds to the position of the fluid atomizer in the LPC

Figure 8 Examples of records of pressure sensors P3–P5 (solid curves) and optical sensors F3–F5 (dashed curves) in two
experiments with TEA injection under the same initial conditions. The working medium is superheated steam (TLPC = 415±5K,
PLPC = 0.1MPa, and PHPC = 0.34MPa). The time delay of shock wave arrival is 4 ≤ τS ≤ 5ms

Figure 9 Measured dependences of the shock wave velocity on the traveled distance in experiments with the same initial
conditions. The working medium is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1MPa, and PHPC = 0.34MPa). The
working fluids are TEA, TS-1 kerosene, and n-dodecane. The time delay of shock wave arrival is 7 ≤ τS ≤ 9 ms. The vertical
dashdotted line corresponds to the position of the fluid atomizer in the LPC

GORENIE I VZRYV (MOSKVA) — COMBUSTION AND EXPLOSION 2024 volume 17 number 2



Amplification of the shock wave in a two-phase mixture of superheated steam and liquid triethylaluminum

Figure 10 Measured dependences of the shock wave velocity on the traveled distance in experiments with the same initial
conditions. The working medium is superheated steam (TLPC = 415± 5K, PLPC = 0.1MPa, and PHPC = 0.34MPa). In four
experiments, the working fluid is TEA (filled symbols). The delay time of shock wave arrival is τS = 10ms. In seven experiments
(open symbols), a shock wave propagates through superheated steam without injection of working fluid. Plotted for the sake of
comparison is a curve for n-dodecane injection at a time delay of shock wave arrival τS = 9 ms. The vertical dashdotted line
corresponds to the position of the fluid atomizer in the LPC

Figure 11 Measured dependences of the shock wave velocity on the traveled distance in experiments with the same initial
conditions. The working medium is superheated steam (TLPC = 415 ± 5 K, PLPC = 0.1MPa, and PHPC = 0.34MPa). The
working fluids are TEA or H2O. The delay times of shock wave arrival are τS = 22 and 48 ms. The vertical dashdotted line
corresponds to the position of the fluid atomizer in the LPC
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