INFLUENCE OF TWO-LIQUID DROPLET TEMPERATURE ON THE CHARACTERISTICS OF CHILD DROPLETS DURING MICROEXPLOSION AND PUFFING

R. M. Fedorenko, D. V. Antonov, and P. A. Strizhak

National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russian Federation

Abstract: The results of experimental studies of the influence of the temperature of two-liquid drops on the characteristics of child droplets during puffing/microexplosion are presented. The components of the parent two-liquid drops were: diesel fuel; kerosene; rapeseed oil; and water. The volumetric concentration of the flammable component during the experiments was 90%. The temperature of the two-liquid droplets was recorded using a National Instruments data acquisition complex and low-inertia thermocouples. The temperature of the gas—air environment in the experiments varied from 630 to 750 K. The characteristics of the processes of microexplosive breakup of two-liquid droplets were recorded using the shadow photography method. Processing of the received video frames was carried out using the author's program codes in MATLAB. The main recorded characteristics are: the sizes of the initial drops during the heating process, the number and radii of child droplets. A transition boundary has been established for the temperature of two-liquid droplets before puffing and microexplosion. A dimensionless criterion F_{cd} is proposed which makes it possible to take into account the simultaneous contribution of the time required to warm up a two-liquid drop to the conditions of microexplosive breakup, the time required for the proposed criterion, areas characteristic of different breakup modes were identified.

Keywords: microexplosive breakup; two-liquid droplets; kerosene; Diesel fuel; rapeseed oil; child droplets; shadow photography

DOI: 10.30826/CE24170206

EDN: XRSJTH

Figure Captions

Figure 1 Scheme of the experimental setup for registration of fragmentation characteristics of two-liquid droplets: 1 - tubular muffle furnace; 2 - heat-insulated cylinder; 3 - two-liquid droplet; 4 - holder; 5 - National Instruments temperature registration system; 6 - light source; 7 - high-speed camera; and 8 - motorized manipulator

Figure 2 Typical video frames of child droplets resulting from microexplosive breakup of two-liquid droplets (*a*) and binarized image of the same frame (*b*)

Figure 3 Typical intensity profiles (a) and derivatives dI(x)/dx (b) for focused (1) and unfocused droplets (2)

Figure 4 Typical video frames of microexplosive breakup regimes of two-liquid droplets: (a) puffing (kerosene 90% / water 10%; $T_{\text{gas}} = 630 \pm 10$ K; and $R_{d0} = 0.95 \pm 0.02$ mm); (b) microexplosion (Diesel fuel 90% / water 10%; $T_{\text{gas}} = 705 \pm 10$ K; and $R_{d0} = 0.99 \pm 0.03$ mm)

Figure 5 Dynamics of radii (grey curves) and temperature (black curves) changes of two-liquid droplets during heating for different regimes of microexplosive breakup (1 – microexplosion; and 2 – puffing) for droplets of rapeseed oil 90% / water 10% (*a*), Diesel fuel 90% / water 10% (*b*), and kerosene 90% / water 10% (*c*). Parameters of the experiment: $T_{\text{gas}} = 700 \pm 10$ K and $R_{d0} = 0.98 \pm 0.02$ mm

Figure 6 Dynamics of radii (grey curves) and temperature (black curves) changes of homogeneous drops of water (1), rapeseed oil (2), Diesel fuel (3), and kerosene (4). Parameters of the experiment: $T_{gas} = 700 \pm 10$ K and $R_{d0} = 0.98 \pm 0.02$ mm

Figure 7 The values of the dimensionless criterion F_{cd} vs. the ratio of the average temperature of a two-liquid droplet before microexplosive breakup to the temperature of the gas medium (T_d/T_{gas}) obtained by generalizing experimental data for droplets based on rapeseed oil, Diesel fuel, and kerosene $(T_a = 630-750 \text{ K} \text{ and } R_{d0} = 0.8-1.1 \text{ mm})$: *I* – rapeseed oil 90% / water 10%; *2* – Diesel fuel 90% / water 10%; *3* – kerosene 90% / water 10%; empty signs – microexplosion; and filled signs – puffing

Table Caption

Main properties of liquids (based on data from [16]) used in the experiments at their starting temperature of about 300 K

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2024 volume 17 number 2

Acknowledgments

This research project was supported by the Russian Science Foundation (Project No. 21-71-10008, https://rscf.ru/project/21-71-10008/).

References

- Gasanov, B. M., and N. V. Bulanov. 2014. Effect of the concentration and size of droplets of the dispersed phase of an emulsion on the character of heat exchange in a boiling emulsion. *High Temp.* 52:86–92. doi: 10.1134/ S0018151X13060102.
- Watanabe, H., Y. Shoji, T. Yamagaki, J. Hayashi, F. Akamatsu, and K. Okazaki. 2016. Secondary atomization and spray flame characteristics of carbonated W/O emulsified fuel. *Fuel* 182:259–265. doi: 10.1016/j.fuel.2016.05.121.
- Ithnin, A. M., H. Noge, H. A. Kadir, and W. Jazair. 2014. An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study. *J. Energy Inst.* 87:273–288. doi: 10.1016/j.joei.2014.04.002.
- 4. Ayhan, V., and S. Tunca. 2018. Experimental investigation on using emulsified fuels with different biofuel additives in a DI diesel engine for performance and emissions. *Appl. Therm. Eng.* 129:841–854. doi: 10.1016/ j.applthermaleng.2017.10.106.
- Chmielewski, M., P. Niszczota, and M. Gieras. 2020. Combustion efficiency of fuel-water emulsion in a small gas turbine. *Energy* 211:118961. doi: 10.1016/ j.energy.2020.118961.
- Zhukov, V. E., A. N. Pavlenko, M. I. Moiseev, and D. V. Kuznetsov. 2017. Dynamics of interphase surface of self-sustaining evaporation front in liquid with additives of nanosized particles. *High Temp.* 55:79–86. doi: 10.1134/S0018151X17010242.
- Warncke, K., S. Gepperth, B. Sauer, A. Sadiki, J. Janicka, R. Koch, and H.-J. Bauer. 2017. Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet. *Int. J. Multiphas. Flow* 91:208–224. doi: 10.1016/j.ijmultiphaseflow.2016.12.010.
- Yin, Z., P. Nau and W. Meier. 2017. Responses of combustor surface temperature to flame shape transitions in a turbulent bi-stable swirl flame. *Exp. Therm. Fluid Sci.* 82:50–57. doi: 10.1016/j.expthermflusci.2016.11.004.
- Fu, W. B., L. Y. Hou, L. Wang, and F. H. Ma. 2002. A unified model for the micro-explosion of emulsified droplets of oil and water. *Fuel Process. Technol.* 79:107–119. doi: 10.1016/S0378-3820(02)00106-6.
- Shinjo, J., J. Xia, L. C. Ganippa, and A. Megaritis. 2014. Physics of puffing and microexplosion of emulsion fuel droplets. *Phys. Fluids* 26:103302. doi: 10.1063/1.4897918.
- Shinjo, J., J. Xia, A. Megaritis, L. C. Ganippa, and R. F. Cracknell. 2016. Modeling temperature distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing. *Atomization Spray.* 26:551–583. doi: 10.1615/ AtomizSpr.2015013302.
- 12. Strotos, G., I. Malgarinos, N. Nikolopoulos, and M. Gavaises. 2016. Numerical investigation of aerody-

namic droplet breakup in a high temperature gas environment. *Fuel* 181:450–462. doi: 10.1016/j.fuel.2016.04.126.

- Antonov, D. V., R. M. Fedorenko, and P.A. Strizhak.
 2020. Child droplets produced by micro-explosion and puffing of two-component droplets. *Appl. Therm. Eng.* 164:114501. doi: 10.1016/j.applthermaleng.2019.114501.
- Antonov, D. V., M. V. Piskunov, and P. A. Strizhak. 2019. Breakup and explosion of droplets of two immiscible fluids and emulsions. *Int. J. Therm. Sci.* 142:30–41. doi: 10.1016/j.ijthermalsci.2019.04.011.
- Antonov, D. V., and P. A. Strizhak. 2020. Intensification of vaporization and secondary atomization of droplets of fire-extinguishing liquid composition. *Tech. Phys. Lett.* 46:122–125. doi: 10.1134/S1063785020020029.
- Yaws, C. L., eds. 2003. Yaws' handbook of thermodynamic and physical properties of chemical compounds. Norwich, NY: Knovel. 777 p.
- Antonov, D. V., G. V. Kuznetsov, and P.A. Strizhak.
 2019. Comparison of the characteristics of microexplosion and ignition of two-fluid water-based droplets, emulsions and suspensions, moving in the hightemperature oxidizer medium. *Acta Astronaut.* 160:258– 269. doi:10.1016/j.actaastro.2019.04.048.
- Antonov, D. V., R. M. Fedorenko, and P.A. Strizhak. 2022. Kollektivnye effekty pri formirovanii vtorichnykh fragmentov v rezul'tate mikrovzryvnoy fragmentatsii kompozitsionnykh topliv [Collective effects in the secondary fragments formation as a result of microexplosive fragmentation of composite fuel]. *Goren. Vzryv* (*Mosk.*) — *Combustion and Explosion* 15(2):22–33. doi: 10.30826/CE22150203.
- Antonov, D. V., R. S. Volkov, R. M. Fedorenko, P.A. Strizhak, G. Castanet, and S. S. Sazhin. 2021. Temperature measurements in a string of three closely spaced droplets before the start of puffing/microexplosion: Experimental results and modelling. *Int. J. Heat Mass Tran.* 181:121837. doi: 10.1016/j.ijheatmasstransfer. 2021.121837.
- Chen, S., and D. Li. 2006. Image binarization focusing on objects. *Neurocomputing* 69:2411–2415. doi: 10.1016/j.neucom.2006.02.014.
- 21. Soille, P. 2004. *Morphological image analysis: Principles and applications*. Berlin–Heidelberg: Springer. 392 p.
- 22. Fedorenko, R. M., D. V. Antonov, P.A. Strizhak, and S. S. Sazhin. 2022. Time evolution of composite fuel/water droplet radii before the start of puffing/micro-explosion. *Int. J. Heat Mass Tran.* 191:122838. doi: 10.1016/j.ijheatmasstransfer.2022.122838.
- Egorov, R. I., P. P. Tkachenko, R. I. Taburchinov, and A. O. Chulkov. 2020. The propagation and ignition of the finely dispersed coal – water aerosol. *Fuel* 263:116767. doi: 10.1016/j.fuel.2019.116767.

- Antonov, D. V., K. Yu. Vershinina, and R. M. Fedorenko. 2023. Micro-explosive fragmentation of two-fluid droplets based on tall oil. *Tech. Phys. Lett.* 49(7):41–45. doi: 10.61011/TPL.2023.07.56443.19575.
- Avulapati, M. M., T. Megaritis, J. Xia, and L. Ganippa. 2019. Experimental understanding on the dynamics of micro-explosion and puffing in ternary emulsion droplets. *Fuel* 239:1284–1292. doi: 10.1016/j.fuel.2018.11.112.
- Antonov, D. V., R. M. Fedorenko, and P. A. Strizhak. 2022. Micro-explosion phenomenon: Conditions and benefits. *Energies* 15(20):7670. doi: 10.3390/en15207670.
- Sazhin, S. S., T. Bar-Kohany, Z. Nissar, D. Antonov, P.A. Strizhak, and O. D. Rybdylova. 2020. A new approach to modelling micro-explosions in composite droplets. *Int. J. Heat Mass Tran.* 161:120238. doi: 10.1016/ j.ijheatmasstransfer.2020.120238.
- Shen, S., H. Liu, Y. Liu, X. Liu, H. Hu, Z. Hu, and T. Wang. 2023. Dynamic details inside water-in-oil (W/O) emulsion droplet and its impact on droplet evapora-

tion and micro-explosion. *Fuel* 338:127254. doi: 10.1016/j.fuel.2022.127254.

- Zhang, H., Z. Lu, T. Wang, and Z. Che. 2023. Mist formation during micro-explosion of emulsion droplets. *Fuel* 339:127350. doi: 10.1016/j.fuel.2022.127350.
- Tarlet, D., C. Allouis, and J. Bellettre. 2016. The balance between surface and kinetic energies within an optimal micro-explosion. *Int. J. Therm. Sci.* 107:179–183. doi: 10.1016/j.ijthermalsci.2016.04.008.
- Volkov, R. S., and P. A. Strizhak. 2018. Using planar laser induced fluorescence to explore the mechanism of the explosive disintegration of water emulsion droplets exposed to intense heating. *Int. J. Therm. Sci.* 127:126–141. doi: 10.1016/j.ijthermalsci.2018.01.027.
- Mura, E., C. Josset, K. Loubar, G. Huchet, and J. Bellettre. 2010. Effect of dispersed water droplet size in microexplosion phenomenon for water in oil emulsion. *Atomization Spray.* 20(9):791–799. doi: 10.1615/AtomizSpr.v20.i9.40.

Received December 4, 2023

Contributors

Fedorenko Roman M. (b. 1997) — research engineer, School of Energy Engineering, National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russian Federation; vfedrm@gmail.com

Antonov Dmitrii V. (b. 1996) — Candidate of Science in physics and mathematics, associate professor, Research School of Physics of High-Energy Processes, National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russian Federation; antonovdv132@gmail.com

Strizhak Pavel A. (b. 1985) – Doctor of Science in physics and mathematics, professor, School of Energy Engineering, National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russian Federation; pavelspa@tpu.ru