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Abstract: The results of experimental studies of the influence of the temperature of two-liquid drops on the
characteristics of child droplets during puffing/microexplosion are presented. The components of the parent two-
liquid drops were: diesel fuel; kerosene; rapeseed oil; and water. The volumetric concentration of the flammable

component during the experiments was 90%. The temperature of the two-liquid droplets was recorded using
a National Instruments data acquisition complex and low-inertia thermocouples. The temperature of the gas–air
environment in the experiments varied from 630 to 750 K. The characteristics of the processes of microexplosive
breakup of two-liquid droplets were recorded using the shadow photography method. Processing of the received
video frames was carried out using the author’s program codes in MATLAB. The main recorded characteristics are:
the sizes of the initial drops during the heating process, the number and radii of child droplets, the delay times of
microexplosive breakup, and the times of breakup of the two-liquid drop into child droplets. A transition boundary
has been established for the temperature of two-liquid droplets before puffing and microexplosion. A dimensionless
criterion Fcd is proposed which makes it possible to take into account the simultaneous contribution of the time
required to warm up a two-liquid drop to the conditions of microexplosive breakup, the time required for the
formation of child droplets, and the ratio of the surface areas of the liquid after and before breakup. Using the
proposed criterion, areas characteristic of different breakup modes were identified.
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Figure Captions

Figure 1 Scheme of the experimental setup for registration of fragmentation characteristics of two-liquid droplets: 1 — tubular
muffle furnace; 2 — heat-insulated cylinder; 3 — two-liquid droplet; 4 — holder; 5 — National Instruments temperature
registration system; 6 — light source; 7 — high-speed camera; and 8 — motorized manipulator

Figure 2 Typical video frames of child droplets resulting from microexplosive breakup of two-liquid droplets (a) and binarized
image of the same frame (b)

Figure 3 Typical intensity profiles (a) and derivatives dI(x)/dx (b) for focused (1) and unfocused droplets (2)

Figure 4 Typical video frames of microexplosive breakup regimes of two-liquid droplets: (a) puffing (kerosene 90% / water 10%;
Tgas = 630 ± 10 K; and Rd0 = 0.95 ± 0.02 mm); (b) microexplosion (Diesel fuel 90% / water 10%; Tgas = 705 ± 10 K; and
Rd0 = 0.99 ± 0.03mm)

Figure 5 Dynamics of radii (grey curves) and temperature (black curves) changes of two-liquid droplets during heating for
different regimes of microexplosive breakup (1 — microexplosion; and 2 — puffing) for droplets of rapeseed oil 90% / water
10% (a), Diesel fuel 90% / water 10% (b), and kerosene 90% / water 10% (c). Parameters of the experiment: Tgas = 700± 10 K
and Rd0 = 0.98 ± 0.02mm

Figure 6 Dynamics of radii (grey curves) and temperature (black curves) changes of homogeneous drops of water (1), rapeseed
oil (2), Diesel fuel (3), and kerosene (4). Parameters of the experiment: Tgas = 700± 10 K and Rd0 = 0.98± 0.02mm

Figure 7 The values of the dimensionless criterion Fcd vs. the ratio of the average temperature of a two-liquid droplet before
microexplosive breakup to the temperature of the gas medium (Td/Tgas) obtained by generalizing experimental data for droplets
based on rapeseed oil, Diesel fuel, and kerosene (Ta = 630–750 K and Rd0 = 0.8–1.1 mm): 1 — rapeseed oil 90% / water 10%;
2 — Diesel fuel 90% / water 10%; 3 — kerosene 90% / water 10%; empty signs — microexplosion; and filled signs — puffing

Table Caption
Main properties of liquids (based on data from [16]) used in the experiments at their starting temperature of about 300 K
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