THE POSSIBILITIES OF USING A HARDWARE AND SOFTWARE COMPLEX "NANOGATE-22/HSC" IN PHYSICAL EXPERIMENTS

M. I. Krutik¹, V. A. Arinin², B. I. Tkachenko², and S. V. Dudin³

¹NPP NANOSCAN LLC, 18-5B Stromynka Str., Moscow 111116, Russian Federation

²Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics, 37 Mira Ave., Sarov, Nizhny Novgorod Region 607188, Russian Federation

³Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 Prosp. Academician Semenov, Chernogolovka, Moscow Region 142432, Russian Federation

Abstract: The technical characteristics and capabilities of the NANOGATE-22/PAC hardware and software complex developed at NPP NANOSCAN LLC are presented. The complex is compared with foreign analogues. The basis of the complex is an 8-channel 16-frame electron-optical camera designed for high-speed recording of optical images of fast processes in nano- and microsecond time ranges. Examples of using the complex for diagnostics of high-speed pulse experiments with processing of the obtained results are given. Prospects for increasing the spatial and temporal resolution of the complex are shown.

Keywords: multiframe high-speed recording; hardware-software complex; high-speed explosive process; metrologic image processing

DOI: 10.30826/CE24170212

EDN: AWPLOU

Figure Captions

Figure 1 The NANOGATE-22/16 camera (a) and its optical scheme (b)

Figure 2 NANOGATE-22/HSC: a window for preparing the received images for subsequent metrological processing

Figure 3 NANOGATE-22/HSC: the result of the tracer's work on the extremum of the image function

Figure 4 Dynamics of detonation transition through the channel bend of 60° (*a*), 90° (*b*), and 120° (*c*)

Figure 5 A photograph of the experimental device before the experiment

Figure 6 The first frames of eight channels for recording the process of detonation propagation in bulk explosives, the frame of the seventh channel is the result of strobing six frames (a); and the second frames of eight channels for recording the process of detonation propagation in bulk explosives (b)

Figure 7 The routes of the detonation wave that took place in experiment No. 1, grey color corresponds with the routes obtained through the gated channel

Figure 8 Dynamics of detonation waves for detonation cords No. 5 ($1, y = 5.666013x - 1,797010, R^2 = 0.999895$), No. 6 ($2, y = 5,584961x - -1.281966, R^2 = 0.999927$), and No. 7 ($3, y = 5.556537x - 1.260894, R^2 = 0.999792$); empty signs correspond with the gated channel

Figure 9 Photograph of the experimental device before conducting experiment No. 2

Figure 10 Images obtained during experiment No. 2 on the formation of a cylindrical detonation wave

Figure 11 The results of tracing (a) and the dynamics of equivalent radii S (b): 1 – detonation wave in the detonation cord; 2 – passage in the initiation node; 3 – excitation of detonation wave in the sample; 4 – detonation wave in the sample; and 5 – cumulative jet in the air

Figure 12 Photographs of detonation at time $\tau = 47$ (*a*) and 49 μ s (*b*)

Figure 13 Experimental assembly with 48 initiation points

Figure 14 The first frames of eight channels for recording the process of transition of a cylindrical detonation wave to a shock wave in argon (a); and the second frames of eight channels for recording the outcome of the shock wave into the cuvette and the dynamics of axisymmetric compression of argon (b)

Figure 15 The results of tracing the detonation and shock waves (*a*) and the dynamics of equivalent radii S(b): 1 – detonation wave; 2 – detonation wave to shock wave transition; and 3 – shock wave in argon

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2024 volume 17 number 2

References

- Dubovik, A. S. 1975. Fotograficheskaya registratsiya bystroprotekayushchikh protsessov [Photographic recording of fast processes]. Moscow: Fizmatlit. 456 p.
- Pokhil, P. F., V. M. Mal'tsev, and V. M. Zaytsev. 1969. *Me-tody issledovaniya protsessov goreniya i detonatsii* [Methods of research of combustion and detonation processes]. Moscow: Nauka. 301 p.
- Khaldeev, E. V., A. V. Bessonova, D. A. Pronin, Yu. M. Sustaeva, and O. V. Shevlyagin. 2018. Detonation propagation at bend angles in channels of small cross section. *Combust. Explo. Shock Waves* 54(5):624–628. doi: 10.1134/S0010508218050179. EDN: NGQVEF.
- Dudin, S. V., V. A. Sosikov, and S. I. Torunov. 2019. Laboratory explosive system for cylindrical compression. *Combust. Explo. Shock Waves* 55(4):507–511. doi: 10.1134/S0010508219040191. EDN: YVFLGC.
- Sultanov, V. G., S. V. Dudin, V. A. Sosikov, S. I. Torunov, E. V. Vasilyunok, A. V. Razmyslov, and D. Yu. Rapota. 2023. formation of a converging detonation wave with reverse front curvature. *Combust. Explo. Shock Waves* 59(4):516– 525. doi: 10.1134/s0010508223040159. EDN: PGDPZC.

- Dudin, S. V., V. A. Sosikov, S. I. Torunov, and M. I. Kulish. 2022. Szhatie argona na laboratornoy model'noy ustanovke [Compression of argon at the laboratory model facility]. XVI Vseross. simpozium po goreniyu i vzryvu [16th All-Russian Symposium on Combustion and Explosion]. Suzdal'.
- 7. Krutik, M. I., V. P. Mayorov, V. V. Popov, and M. S. Semin. 2013. Razrabotka vos'mikanal'noy nanosekundnoy elektronno-opticheskoy kamery i pervye rezul'taty ee primeneniya v zadachakh registratsii izobrazheniy vzryvnykh i ballisticheskikh protsessov [Development of an eightchannel nanosecond electron-optical camera and the first results of its application in the tasks of image registration of explosive and ballistic processes]. *Ekstremal'nye sostoyaniya veshchestva. Detonatsiya. Udarnye volny. XV Kharitonovskie nauchnye chteniya* [Extreme States of Matter. Detonation. Shock Waves. 15th Kharitonov Scientific Readings]. Sarov.
- Gerasimov, S. I., M. I. Krutik, V. S. Rozhentszov, A. G. Sirotkina, and K. V. Totyshev. 2022. Imaging fast processes using a nanogate-22/16 high-speed camera. *Instrum. Exp. Tech.* 65(3):509–513. doi: 10.1134/S0020441222030022. EDN: TVQTEA.

Received December 4, 2023

Contributors

Krutik Mikhail I. (b. 1948) — director, chief designer, NPP NANOSCAN LLC, 18-5B Stromynka Str., Moscow 111116, Russian Federation; npp-nanoscan@yandex.ru

Arinin Vladimir A. (b. 1962) — senior research scientist, Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics, 37 Mira Ave., Sarov, Nizhny Novgorod Region 607188, Russian Federation; _bobo4ka@mail.ru

Tkachenko Boris I. (b. 1982) — senior research scientist, Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics, 37 Mira Ave., Sarov, Nizhny Novgorod Region 607188, Russian Federation; f_slim@mail.ru

Dudin Sergey V. (b. 1953) — Candidate of Science in physics and mathematics, leading research scientist, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 Prosp. Academician Semenov, Chernogolovka, Moscow Region 142432, Russian Federation; dudinsv@ficp.ac.ru