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Abstract: For the first time, an experimental and computational study of the thermal decomposition of n-propanol
at temperatures typical for combustion and ignition of alcohols was carried out. The experiments were performed
behind reflected shock waves in temperature and pressure ranges of 1120–1550 K and ∼1.0–1.5 atm, respectively.
Information about the decomposition process was obtained by recording the light absorption of the products —
propylene (λ = 197± 1.0 nm) and methyl radicals (λ = 216.6 ± 0.2 nm). The interpretation of the experimental
data was carried out within the framework of the model proposed by A. A. Konnov and modified in the present
work taking into account the new data. As a result of modeling and its comparison with experimental data,
the Arrhenius equation for the rate constant of elimination of a water molecule from n-propanol molecule was
obtained: k1(T ) = (8.3 ± 2.6) · 10

13 exp−(64000/(RT )) s−1. Estimation of the maximum limit of the energy
for the abstraction of the methyl group from the alcohol molecule is estimated to be 82.9 kcal/mol. The results
obtained were compared with the available literature data.
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Figure Captions

Figure 1 Structure of the n-propanol molecule and dissociation energies of its bonds (kcal/mol): D01 = 102.0 (101.1);
D02 = 91.0 (88.7); D03 = 86.2 (87); D04 = 100.3 (99.9); D05 = 95.5 (95.1); D06 = 95.8 (93.9); and D07 = 105.2 (105.2).
Data from [18] and [17] (in parentheses)

Figure 2 Time profiles of pressure and optical density of the working mixture at wavelengths corresponding to the absorption
of methyl radicals (λ = 216.6 nm) and propylene (λ = 197 nm) at initial temperatures T50 = 1390 (a) and 1187 K (b) and
pressures P50 = 1.07 (a) and 0.96 atm (b). For better perception, the CH3 time profile is shifted up 0.2 units

Figure 3 Decimal absorption coefficient of propylene (1) and n-propanol (2) at a wavelength of λ = 197 nm

Figure 4 Comparison of the experimental time profile of the optical density of the heated working mixture (curve with noise)
with its simulation (black curves) within the framework of the chosen reaction scheme for various values of the preexponential
factor in the Arrhenius equation for the rate constant of reaction (R1): 1 — A1 = 4 · 10

13 s−1; 2 — 7 · 1013; and 3 —
A1 = 10 · 10

13 s−1. A mixture of 0.15% n-C3H7OH in argon; T50 = 1187 K; and P50 = 0.96 atm

Figure 5 Illustration of the procedure for determining the value of A1 that provides the minimum square deviation of the
calculated profile from the experimental one and estimating the corresponding uncertainty in this value: 1 — values of σD

calculated for 10 values of A1; 2 — deviation approximation; 3 — uncertainty interval; and 4 — position of the minimum

Figure 6 Temperature dependence of the rate constant for the reaction of elimination of H2O from n-C3H7OH (R1) obtained
in this work: 1 — experiment; and 2 — Eq. (5)

Figure 7 Comparison of the rate constant for the elimination of H2O from n-C3H7OH (reaction (R1)) obtained in this work
with literature data: 1 — present work, experiment; 2 — [15], calculation; 3 — [13], experiment; 4 — extrapolation of 3; and
5 — [20], i-propanol, experiment

Figure 8 Temperature dependence of the lower estimate of the reaction (R2) rate constant for the abstraction of a methyl radical
from an n-propanol molecule (signs). The line corresponds to the minimum possible values of the reaction rate constant (R2)
in the high-pressure limit
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