NEW ALGORITHMS AND DATA STRUCTURES FOR EFFICIENT IMPLEMENTATION OF NUMERICAL SCHEMES IN C++23 PROGRAMMING LANGUAGE STANDARD

V.G. Krupkin and G.N. Mokhin

N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow, 119991, Russian Federation

Abstract: The new version of the standard for the C++ programming language and its standard template library, released at the end of 2023, includes new algorithms and data structures. The paper reports the usage of some of the new features: multidimensional arrays (std::mdspan) and linear algebra library functions (std::linalg). With their help, new opportunities are opened for accelerating numerical schemes for scientific computing, including simulation of combustion problems on personal computers and high-performance clusters. It is shown that the introduction of new functions allows to significantly reduce the cost of designing, writing and debugging the code which can be object-oriented and enables reuse on different architectures. At the same time, the computational performance remains at the same low level of procedural approaches to programming in the style of the C language. As an example of application of these capabilities, the results of modeling the ignition of a square angle by a surface of constant temperature are presented.

Keywords: combustion theory; numerical simulation; optimization; C++ programming language in scientific calculations

DOI: 10.30826/CE24170112

EDN: YDLTMH

Figure Captions

Figure 1 Temperature distribution along the right-angle axis at different moments of time (1-6) and at the moment of ignition (7)

Figure 2 Temperature contour inside the right angle at the moment of ignition

Acknowledgments

The work was carried out within the framework of the Program of Fundamental Scientific Research of the Russian Federation "Combustion and Explosion Processes" (Registration No. 122040500073-4) and had budget funding.

References

- 1. Pitt-Francis, J., and J. Whiteley. 2017. *Guide to scientific computing in C++*. 2nd ed. New York, NY: Springer. 287 p. doi: 10.1007/978-3-319-73132-2.
- Krupkin, V.G., and G.N. Mokhin. 2023. Uskorenie chislennykh shem dlya modelirovaniya zadach pul'siruyushchego goreniya s ispol'zovaniem novykh vozmozhnostey yazyka C++ [Acceleration of numerical schemes for simulation of pulsed combustion using new features of C++ programming language]. *Goren. Vzryv* (Mosk.) Combustion and Explosion 16(2):73–79.
- 3. ISO/IEC JTC 1/SC 22 Programming languages, their environments and system software interfaces. Available at: https://www.iso.org/standard/83626.html (accessed January 18, 2024).

- 4. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard. 2001. Available at: https://www.netlib. org/blas/blast-forum/blas-report.pdf (accessed January 18, 2024).
- 5. Eigen: C++ template library for linear algebra: Matrices, vectors, numerical solvers, and related algorithms. Available at: https://eigen.tuxfamily.org (accessed January 18, 2024).
- 6. Armadillo: C++ library for linear algebra & scientific computing. Available at: https://arma.sourceforge.net (accessed January 18, 2024).
- 7. Blaze: Open-source, high-performance C++ math library for dense and sparse arithmetic. Available at: https://github.com/dendisuhubdy/blaze (accessed January 18, 2024).
- 8. uBlas: Boost Linear and Multilinear Algebra Library. Available at: https://www.boost.org/doc/libs/1_69_0/

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2024 volume 17 number 1

libs/numeric/ublas/doc/index.html (accessed January 18, 2024).

- A free function linear algebra interface based on the BLAS. Available at: https://wg21.link/p1673 (accessed January 18, 2024).
- Krupkin, V. G., and G. N. Mokhin. 2012. Zazhiganie zaostrennykh tel nakalennoy poverkhnost'yu postoyannoy temperatury [Ignition of sharp bodies by a hot surface with constant temperature]. *Goren. Vzryv (Mosk.) – Combustion and Explosion* 5:194–198.

Received January 22, 2024

Contributors

Krupkin Vladimir G. (b. 1949) — Doctor of Science in physics and mathematics, head of laboratory, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; krupkin@chph.ras.ru

Mokhin Grigory N. (b. 1964) — Candidate of Science in physics and mathematics, senior research scientist, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; mokhin@chph.ras.ru