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Abstract: The pulsed detonation gun (PDG) technology was applied for autothermal high-temperature conversion
of natural gas and allothermal oxygen-free gasification of liquid/solid organic wastes with ultrasuperheated steam
(USS) at atmospheric pressure using two flow reactors of significantly different volumes: 100 and 40 l. The PDG
operated at a frequency f of 1 Hz on a mixture of natural gas and oxygen. Waste machine oil and sawdust with
a moisture content of 10 to 30 %(wt.) were used as liquid and solid organic wastes. It was expected that a decrease in
the volume of the flow reactor from 100 to 40 l, on the one hand, should not affect the natural gas conversion and,
on the other hand, could lead to an increase in the gasification temperature in the flow reactor and, accordingly,
to an increase in the quality of the product syngas (H2 + CO). As expected, complete conversion of natural gas
to syngas was achieved in the PDG with H2/CO and CO2/CO ratios of 1.25 and 0.25 which were independent of
the reactor volume. Liquid and solid wastes were converted in the flow reactors into gas containing H2, CO, CO2,
and CH4. The steady-state values of the H2/CO and CO2/CO ratios in the syngas obtained from waste machine
oil were 0.8 and 0.5 in the 100-liter reactor and 0.9 and 0.2 in the 40-liter reactor, respectively, which indicates an
expected increase in the syngas quality. At the same time, the maximum mass flow rate of feedstock in the 40-liter
reactor increased by a factor of more than 4 compared to the 100-liter reactor. The steady-state values of the H2/CO
and CO2/CO ratios in the syngas obtained from a batch of sawdust of a fixed mass (2 kg) were 0.5 and 0.8 for both
reactors and the gasification time in both reactors was about 5–7 min. It has been shown that the measured volume
fractions of H2, CO, and CO2 in the syngas produced both by autothermal high-temperature conversion of natural
gas and by allothermal oxygen-free gasification of liquid/solid organic wastes in the USS medium at atmospheric
pressure and f = 1 Hz are almost independent of the feedstock and reactor volume which is associated with high
values of the local instantaneous gasification temperature.
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Figure Captions

Figure 1 Schematics of two waste converters with a pulsed detonation gun and (a) 100-liter spherical reactor and (b) 40-liter
cylindrical reactor

Figure 2 Time histories of the syngas temperature measured by a thermocouple in the outlet tube of 100- and 40-liter reactors
with a PDG operating at 0.95 ≤ � ≤ 1.8 and f = 1Hz; P ≈ 0.1MPa

Figure 3 Comparison of the measured (symbols) and calculated (curves) volume fractions of dry cooled detonation products of
natural gas – oxygen mixture in a 100-liter reactor (circles) and a 40-liter reactor (squares) at f = 1Hz and P ≈ 0.1MPa. The
calculation was made for a composition-freezing temperature of 2200 K. Measurement errors are shown only for values of �
close to the limiting values

Figure 4 Time histories of the syngas temperature measured by a thermocouple in the outlet tube of 100- and 40-liter reactors
with a PDG operating at f = 1Hz. Time point 0 corresponds to the beginning of the supply of waste machine oil to the reactor
with G = 2 g/s (100-liter reactor) and 4 g/s (40-liter reactor); P ≈ 0.1MPa

∗This paper is based on the work that was presented at the 13th International Colloquium on Pulsed and Continuous Detonations (ICPCD),
April 18–21, 2022, St. Petersburg, Russia.
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Figure 5 Measured compositions of dry cooled syngas obtained by allothermal gasification of waste machine oil as a function
of the liquid mass flow rate (f = 1 Hz, P ≈ 0.1MPa) in 100-liter (dark symbols) and 40-liter (light symbols) reactors.
Measurement errors are shown only for the limiting values of G

Figure 6 Time histories of the syngas temperature measured by a thermocouple in the outlet tube of 100- and 40-liter reactors
with a PDG operating at f = 1 Hz. Time point 0 corresponds to the beginning of the experiment in a cold reactor loaded with
a 2-kilogram batch of sawdust

Figure 7 Time histories of the composition of dry cooled syngas obtained by allothermal gasification of a 2-kilogram batch of
sawdust in a 40-liter reactor with a PDG operating at f = 1Hz; P ≈ 0.1MPa

Figure 8 Measured steady-state compositions of dry cooled syngas obtained by allothermal gasification of sawdust in 100- and
40-liter reactors with a PDG operating at f = 1Hz; P ≈ 0.1MPa

Figure 9 Comparison of syngas compositions in all experiments with autothermal natural gas conversion (squares) and
allothermal gasification of liquid (circles) and solid (triangles) wastes with a PDG operating at f = 1Hz. Large empty symbols
correspond to a 100-liter reactor, small empty symbols correspond to a 40-liter reactor, large filled symbols correspond to plasma
reactors [19, 22], diamonds correspond to RDF gasification [19]; P ≈ 0.1MPa

Table Captions

Table 1 Natural gas composition

Table 2 Proximate analysis of liquid and solid wastes

Table 3 Ultimate analysis of liquid and solid wastes
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