THE FEATURES OF SPONTANEOUS CONDENSATION OF BORON OXIDE IN PLANE AND AXISYMMETRIC NOZZLES: NUMERICAL ANALYSIS

A. M. Savel'ev, D. I. Babushenko, and V. A. Savelieva

P. I. Baranov Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation

Abstract: A model of spontaneous condensation of boron oxide vapors in chemically reacting gas mixtures based on the classical theory of nucleation and one-speed and one-temperature approximation for the equations of a two-phase mixture movement has been developed. The model takes into account the nucleation, condensation growth of droplets, their coagulation, and gas-phase chemical reactions. A numerical study of spontaneous condensation of boron oxide vapors in plane and axisymmetric nozzles has been performed. The condensation in flat nozzles with a small degree of expansion is shown to proceed according to a typical scenario: the formation of a condensation shock wave behind the nozzle throat and the condensation growth of droplets downstream after the jump. In the flat nozzles of similar geometry with the small expansion angle, the location of the condensation in nozzles with a small expansion angle is the equilibrium of vapor and condensate in the outlet section of the nozzle. Phase equilibrium is not achieved in nozzles with a high expansion angle. The higher the expansion angle of the nozzle supersonic part, the greater the deviation from equilibrium in nozzle.

Keywords: boron oxide; condensation; nucleation; nuzzle; modeling

DOI: 10.30826/CE22150306

Figure Captions

Figure 1 Nozzle geometry

Figure 2 Equilibrium mass fractions of condensed boron oxide (1) and gaseous boron oxide (2) in different nozzle sections

Figure 3 The change in the supersaturation degrees (a) and in the mass fractions (b) of the condensed boron oxide in a flat nozzle with $\alpha = 30^{\circ}$ and $H_0 = 200$ mm

Figure 4 Temperature evolution along the plane of symmetry (*a*) and the nozzle wall (*b*) in geometrically similar nozzles, $\alpha = 30^{\circ}$: $I - H_1 = 400$ mm; 2 - 800; and $3 - H_1 = 1600$ mm

Figure 5 Change in the Mach number along the plane of symmetry (*a*) and along the nozzle wall (*b*) in geometrically similar nozzles, $\alpha = 30^{\circ}$: $1 - H_1 = 400$ mm; 2 - 800; and $3 - H_1 = 600$ mm

Figure 6 Change in the Mach number along the plane of symmetry in the nozzles with the expansion angles of 15° (a) and 20° (b)

Figure 7 Change in the supersaturation degrees of the B₂O₃ vapors in the axisymmetric nozzles with the expansion angles of the supersonic part $\alpha = 15^{\circ}$ (*a*) and 30° (*b*); the diameters of the inlet parts of the nozzles D = 400 mm

Figure 8 Change in the mass fraction of condensed boron oxide along the height of the nozzles outlet sections with $\alpha = 15^{\circ}$ (*I*) and 30° (*2*): (*a*) D = 400 mm; and (*b*) D = 1600 mm

Figure 9 Field of Mach numbers in an axisymmetric nozzle: D = 400 mm and $\alpha = 30^{\circ}$

Table Caption

Chemical composition of combustion products at the nozzle inlet

Acknowledgments

The work was supported by the Russian Foundation for Basic Research (project No. 20-08-00299-a).

EDN: JDYUJO

References

- Grabis, J., D. Raŝmane, A. Krumina, and A. Patmalnieks. 2012. Preparation of boron suboxide nanoparticles and their processing. *Mater. Sci.* 18:72–74.
- Tsierkezos, N. G., U. Ritter, Y. N. Thaha, and C. Downing. 2015. Application of multi-walled carbon nanotubes modified with boron oxide nanoparticles in electrochemistry. *Ionics* 21:3087–3095.
- Ramachandran, R., D. Jung, N. A. Bernier, J. K. Logan, M. A. Waddington, and A. M. Spokoyny. 2018. Sonochemical synthesis of small boron oxide nanoparticles. *Inorg. Chem.* 57:8037–8041.
- Berner, M. K., V. E. Zarko, and M. B. Talawar. 2013. Nanoparticles of energetic materials: Synthesis and properties (review). *Combust. Explo. Shock Waves* 49(6):625– 647.
- Savel'ev, A. M., and A. M. Starik. 2017. An improved model of homogeneous nucleation for high supersaturation conditions: Aluminum vapor. *Phys. Chem. Chem. Phys.* 19:523–538.
- Suzdalev, I. P. 2006. Nanotekhnologiya, fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology, physical chemistry of nanoclusters, nanostructures, and nanomaterials]. Moscow: KomKniga. 592 p.
- Savel'ev, A. M., D. I. Babushenko, V. I. Kopchenov, and N. S. Titova. 2021. Numerical study of homogenous nucleation of boron oxide vapor in laval nozzles. *Combust. Explo. Shock Waves* 57(1):30–45.
- Gany, A. 2006. Comprehensive consideration of boron combustion in airbreathing propulsion. AIAA Paper No. 2006-4567.
- Haddad, A., B. Natan, and R. Arieli. 2011. The performance of a boron-loaded gel-fuel ramjet. *Progress in propulsion physics*. Eds. L. T. DeLuca, C. Bonnal, O. Haidn, and S. M. Frolov. EUCASS advances in aerospace sciences book ser. EDP Sciences – TORUS PRESS. 2:499–518.
- Balas, S., and B. Natan. 2016. Boron oxide condensation in a hydrocarbon–boron gel fuel ramjet. *J. Propul. Power* 32:967–974.
- Tower, L. K. 1961. Thermal relations for two-phase expansion with phase equilibrium and example for combustion products of boron-containing fuel. Lewis Flight Propulsion Laboratory. NACA RM E57C11.
- 12. Kortsenshteyn, N. M., and A. K. Yastrebov. 2012. Interphase heat transfer during bulk condensation in the flow of vapor–gas mixture. *Int. J. Heat Mass Tran.* 55:1133–1140.
- Avetisyan, A. R., V. M. Alipchenkov, and L. I. Zaichik. 2002. Simulation of a flow of spontaneously condensing moist steam in laval nozzles. *High Temp.* 40(6):872–881.

- 14. Frenkel', Ya. I. *Kineticheskaya teoriya zhidkostey* [Kinetic theory of liquids]. Leningrad: Nauka, 1975. 592 p.
- 15. Savel'ev, A. M., and A. M. Starik. 2001. Dynamics of sulfate aerosol formation in engine jets. *Fluid Dyn.* 1:95–103.
- 16. Savel'ev, A. M. 2010. Obrazovanie ul'tradispersnykh zaryazhennykh i neytral'nykh aerozoley v elementakh protochnogo trakta i vykhlopnoy strue turboreaktivnogo dvigatelya [Formation of ultrafine charged and neutral aerosols in the elements of the flow path and exhaust jet of a turbojet engine]. Moscow. PhD Thesis. 180 p.
- Savel'ev, A. M., and A. M. Starik. 2009. On coagulation mechanisms of charged nanoparticles produced by combustion of hydrocarbon and metallized fuels. *J. Exp. Theor. Phys.* 108(2):326–340.
- Chase, M. W. 1998. NIST-JANAF Thermochemical Tables. 4th ed.
- Shpil'rain, E. E., K. A. Yakimovich, and A. F. Tsitsarkin. 1972. Investigation of the surface tension of liquid boron oxide to 2000 °C by the cylinder pulling method. *High Temp.* – *High Press.* 4:67–76.
- Shpil'rain, E. E., K. A. Yakimovich, and A. Tsitsarkin. 1974. Surface tension of liquid boric oxide at up to 2100°C. *High Temp.* 12:68–71.
- Fujino, S., H. Wang, and K. Morinaga. 2005. Surface tension of PbO-B₂O₃ and Bi₂O₃-B₂O₃ glass melts. *J. Mater. Sci.* 40:7–12.
- Shi, X., Q. Wang, X. Niu, C. Li, and K. Lu. 2006. An examination of surface tension of binary lithium borate melts as a function of composition and temperature. *J. Am Ceram. Soc.* 89:3222–3228.
- Boldarev, A. S., V.A. Gasilov, L. I. Zaichik, and O. G. Ol'khovskaya. 1998. Numerical modeling of quasione-dimensional and two-dimensional flows, of spontaneously condensing steam in transonic nozzles. *High Temp.* 36(1):131–137.
- Deich, M. E., and G. A. Filippov. 1968. *Gazodinamika* dvukhfaznykh sred [Gasdynamics of two-phase media]. Moscow: Energiya. 423 p.
- 25. Tkalenko, R. A. 1972. Condensation of water vapor upon expansion in planar and axiosymmetric nozzles. *Fluid Dyn.* 7:1009–1012.
- Sternin, L. E. 1974. Osnovy gazodinamiki dvukhfaznykh techeniy v soplakh [Fundamentals of gas dynamics of twophase currents in nozzles]. Moscow: Mashinostroenie. 212 p.
- Kortsenshtein, N. M., and E. V. Samuilov. 2005. Generation of aerosol plasma in the process of volume condensation in a cloud of surface explosion products. *High Temp.* 43(5):661–672.

Received June 8, 2022

Contributors

Savel'ev Alexander M. (b. 1971) — Candidate of Science in technology, head of sector, P. I. Baranov Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation; amsavelev@ciam.ru

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2022 volume 15 number 3

Babushenko Denis I. (b. 1981) — head of sector, P. I. Baranov Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation; dibabushenko@ciam.ru

Savelieva Vera A. (b. 1972) — Candidate of Science in biology, senior research scientist, P. I. Baranov Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation; vasaveleva@ciam.ru