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Abstract: The results of the second stage of numerical simulation of the ONERA LAPCAT II experiment on
high-speed hydrogen combustion in a model duct are described. At this stage, calculations were carried out taking
into account a duct wall roughness. The results of calculations based on the IDDES-SST approach are presented.
It is shown that the effect of wall roughness is significant but does not allow achieving a good agreement with
experimental data. The search for determining physical factors was carried out on the basis of Reynolds-averaged
Navier–Stokes calculations. The influence of chemical kinetics, variable turbulent Prandtl number, and roughness
height was tested. The temperature of duct walls (in addition to wall roughness) has the greatest influence on the
pressure distribution along duct walls. The temperature of walls that ensures a good agreement with the ONERA
experiment was found.
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Figure Captions

Figure 1 Duct geometry and block structure of the computational mesh for calculations of the ONERA LAPCAT II experimental
model: arrows — fuel supply; 1 — segment with constant cross section; 2 — segment with an extension of 2◦; 3 — segment with
an extension of 6◦; 4 — segment with an extension of 2◦; and 5 — expanding buffer segment with slip walls

Figure 2 Comparison of calculations (curves) with experimental (signs) static pressure distributions along the upper wall
of the duct [6]: (a) RANS calculations by ONERA [9] and TSAGI [11]; (b) IDDES-TsAGI calculations, “wall law” with
roughness taken into account; 1 — ONERA experiment, without fuel supply; 2 — ONERA experiment, with fuel supply; 3 —
RANS-calculation of ONERA, smooth walls; 4 — RANS-calculation of ONERA, rough walls; 5 — RANS-calculation of
TsAGI, smooth walls; 6 — basic IDDES-calculation of TsAGI; 7 — IDDES-calculation of TSAGI, hs = 65 µm; and 8 —
IDDES-TsAGI calculation, corrected flow rate

Figure 3 Comparison of the Mach number fields obtained in IDDES calculations: (a) with smooth duct walls; and (b) with
rough walls. White colour — isolines u = 0

Figure 4 Comparison of calculations (curves) with experimental (signs) static pressure distributions along the duct upper wall [6]:
(a) IDDES-calculations of TSAGI with roughness taken into account; (b) RANS-calculations of TsAGI [11]; 1 — ONERA
experiment, without fuel supply; 2 — ONERA experiment, with fuel supply; 3 — IDDES-calculation of TsAGI, hs = 65 µm
and corrected flow rate, “wall law” boundary condition; 4 — IDDES-calculation of TSAGI for the same parameters, no-slip
condition; 5 — RANS-calculation for the same parameters; 6 — RANS-calculation, kinetics with 19 reactions; and 7 —
RANS-calculation, Prt = 0.7 = const

Figure 5 Field of heat release rate obtained in RANS-calculations: (a) calculation of ONERA [9]: field of the heat release rate,
averaged over the duct side width, superimposed on the density gradient field; (b) calculation of TSAGI 2021, instantaneous
field of decimal logarithm of the local heat release rate in the duct symmetry plane, the temperature of walls is 716 K, the vertical
scale is increased by a factor of 2, contours of the longitudinal velocity are shown; and (c) analogous field for wall temperature
1413 K

Figure 6 The structure of the calculation meshes in the region of hydrogen injection: (a) TsAGI mesh, which was used in the
calculations of 2021 (in the background — the longitudinal velocity field); and (b) ONERA mesh from [10]
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Figure 7 Comparison of 2021 RANS calculations of TSAGI based on the no-slip condition for rough walls with experimental
static pressure distributions along the duct upper wall [6]: (a) initial stage of the study; (b) influence of temperature and
approximation errors; 1 — ONERA experiment, without fuel supply; 2 — ONERA experiment, with fuel supply; RANS
calculations: 3 — hs = 100 µm; 4 — heat-insulated walls; 5 — 1st order of approximation; 6 — TW = 1000 K; 7 — 1540; and
8 — TW = 1413 K

Figure 8 Schlieren image of the flow in the region of the fuel injection: (a) figure from [6] with an interpretation of the flow
elements and with an enlarged jet blowing region; and (b) zoomed jet blowing region with superimposed isolines of the Mach
number obtained in the RANS calculation of TsAGI
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