MEASUREMENT OF FLOW RATE CHARACTERISTICS OF FLOW-THROUGH GAS GENERATOR AT GASIFICATION OF LOW-MELTING SOLID MATERIAL BY AMBIENT TEMPERATURE AIRFLOW

D. A. Vnuchkov¹, V. I. Zvegintsev¹, D. G. Nalivaichenko¹, and S. M. Frolov^{2,3}

¹S.A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, 4/1 Institutskaya Str., Novosibirsk 630090, Russian Federation

²N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation

³National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation

Abstract: A semiempirical method is proposed for determining the flow characteristics of a flow-through gas generator operating on gasification of a solid low-melting material by an ambient temperature airflow. Experimental studies of the gasification of a polypropylene charge are performed to demonstrate the approach. In the test fires, the yield of gasification products ranged from 43 to 120 g/s and the ratio of mass flow rates of air and polypropylene gasification products was 2.3-2.9. The analysis of errors inherent in the approach is carried out.

Keywords: flow-through gas generator; solid low-melting material; polypropylene; flow rate

DOI: 10.30826/CE21140306

Figure Captions

Figure 1 Schematic of the Model Aerodynamic Facity of ITAM SB RAS

Figure 2 Arrangement of the flow-through gas generator with the direct-connect air supply manifold: 1 - electric heater; 2 - gas generator; and 3 - exhaust tube

Figure 3 Gas generator with hydrogen ignition: 1 - air supply; 2 - throttle insert; 3 - hydrogen supply; 4 - pressure measurement; 5 - temperature measurement; 6 - test sample; 7 - spark plug; 8 - measuring nozzle; 9 - exhaust tube; and 10 - thermal insulator

Figure 4 Schematic of sample element. Dimensions are in millimeters

Figure 5 Gas generator with ignition by pyrocharge: 1 - air supply; 2 - pyrocharge; 3 - initiator; 4 - test sample; $5 - P_{0\text{in}}$ measurement; and $6 - T_{0\text{in}}$ measurement

Figure 6 Time histories of gas pressure and temperature at the gas generator inlet (1) and outlet (2) in test fires 1 (a), 2 (b), and 3 (c); 3 is the static pressure in the measuring nozzle

Figure 7 Time histories of gas pressure and temperature at the gas generator inlet (1) and outlet (2) in test fires 4 (a) and 5 (b); 3 is the static pressure in the measuring nozzle

Figure 8 Time histories of gas pressure and temperature at gas generator inlet (1) and outlet (2) in test fires 6 (a), 7 (b), 8 (c), and 9 (d); 3 is the static pressure in the measuring nozzle

Figure 9 An example of determining the air flow rate $G_{in}(t)$ for test fire 4: $P_0 = 3.74$ MPa; $T_0 = 290$ K; $\gamma = 1.4$; R = 287 J/kg/K; $m_1 = 0.0404$ (kg·K/J)^{1/2}; $d_1^* = 5.15$ mm; $F_1^* = 20.83$ mm²; B = 0.002554 s⁻¹; and $G_0 = 0.181$ kg/s

Figure 10 Coefficient m_2 for calculating the gas flow rate at the gas generator outlet depending on the polypropylene-to-air mass ratio; P = 1 MPa

Figure 11 Calculation of the gas flow rate at the gas generator outlet in test fire 9: (a) gas flow rate $(1 - \text{inlet}; 2 - \text{outlet at} m_2 = 0.0349 \text{ (kg·K/J)}^{1/2}$; and $3 - \text{outlet at} m_2 = 0.0404 \text{ (kg·K/J)}^{1/2}$); and (b) yield of gasification products $(1 - \text{yield at} m_2 = 0.0349 \text{ (kg·K/J)}^{1/2}$; $2 - \text{output at} m_2 = 0.0404 \text{ (kg·K/J)}^{1/2}$ with correction; $3 - \text{output at} m_2 = 0.0404 \text{ (kg·K/J)}^{1/2}$; and 4 - difference between outlet and inlet flow rates

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2021 volume 14 number 3

Figure 12 Error in calculating the gas mass flow rate of gasification products with the introduction of a correction for the change in the sample mass

Figure 13 Calculation of gas mass flow rates at the gas generator inlet (1) and outlet (2) (a) and yield of gasification products in test fires 1 to 3 (b)

Figure 14 Calculation of gas mass flow rates at gas generator inlet (1) and outlet (2) (a) and yield of gasification products in test fires 4 and 5 (b)

Figure 15 Calculation of gas mass flow rates at gas generator inlet (1) and outlet (2) (a) and yield of gasification products in test fires 6 to 9 (b)

Table Captions

Table 1 Characteristics of gas generator operation with hydrogen ignition

 Table 2 Characteristics of gas generator operation with pyrocharge ignition

Acknowledgments

This work was implemented within the framework of the State assignment of ITAM SB RAS (Registration Nos. 121030500145-0 and 121030500154-2).

References

- Kondratova, O. A. 2007. Issledovanie rabochikh protsessov tverdotoplivnykh gazogeneratorov podushek bezopasnosti [Study of working processes of solid-fuel gas generators of airbags]. Tomsk. PhD Thesis.
- Karabeyoglu, A., G. Zilliac, B.J. Cantwell, S. DeZilwa, and P. Castellucci. 2004. Scale-up tests of high regression rate paraffin-based hybrid rocket fuels. // J. Propul. Power 20:1037–1045.
- Encinar, J. M., and J. F. González. 2008. Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. *Fuel Process. Technol.* 89:678–686.
- Aboulkas, A., K. El harfi, and A. El Bouadili. 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. *Energ. Convers. Manage*. 51:1363–1369.
- Mazzetti, A., L. Merotto, and G. Pinarello. 2016. Paraffinbased hybrid rocket engines applications: A review and a market perspective. *Acta Astronaut*. 126:286–297.
- 6. Srivastava, Diksha. 2021. Advances in biofuel technology: A review. *IOSR J. Engineering* 11(4):32–41.
- Rashkovskiy, S.A., and S. E. Yakush. 2020. Numerical simulation of low-melting temperature solid fuel regression in hybrid rocket engines. *Acta Astronaut*. 176:710– 716. doi: 10.1016/j.actaastro.2020.05.002.
- Salgansky, E. A., and N. A. Lutsenko.2021. Effect of solid fuel characteristics on operating conditions of lowtemperature gas generator for high-speed flying vehicle. *Aerosp. Sci. Technol.* 109:106420.
- Bobrov, A. N., D. A. Yagodnikov, and I. V. Popov. 1992. Ignition and combustion in a two-component powder suspension in a gas. *Combust. Explo. Shock Waves* 28(5):453– 457. doi: 10.1007/BF00755713.

- Glotov, O. G., D. A. Yagodnikov, V. S. Vorob'ev, *et al.* 2007. Ignition, combustion and agglomeration of encapsulated aluminum particles in a composite solid propellant. II. Experimental studies of agglomeration. *Combust. Explo. Shock Waves* 43(3):320–333. doi: 10.1007/s10573-007-0045-y.
- Krasil'nikov, A. V., G. A. Makarevich, and A. V. Mikhailov. 2008. Stend dlya eksperimental'nogo issledovaniya sverkhzvukovogo goreniya uglevodorodnykh topliv [A facility for an experimental research in supersonic hydrocarbon fuels combustion]. *Kosmonavtika i raketostroenie* [Cosmonautics and Rocket Manufacturing] 1(50):35–42.
- DeLuca, L. T., L. Galfetti, G. Colombo, F. Maggi, A. Bandera, M. Boiocchi, G. Gariani, L. Merotto, C. Paravan, and A. Reina. 2011. Time-resolved burning of solid fuels for hybrid rocket propulsion. *Progress in propulsion physics*. Eds. L. DeLuca, C. Bonnal, O. Haidn, and S. Frolov. EUCASS advances in aerospace sciences book ser. EDP Sciences – TORUS PRESS. 2:405–426.
- Shabunin, A. I., S. V. Kalinin, V. I. Sarab'ev, D. A. Yagodnikov, and A. R. Polyanskii. 2012. Rezul'taty issledovaniya i razrabotki nizkotemperaturnykh bystrogoryashchikh gazogeneriruyushchikh topliv dlya sistem peremeshcheniya elementov ispolnitel'nykh mekhanizmov [The results of research and development of lowtemperature, fast-burning, gas-generating fuels for systems moving elements of actuators]. *Science and Education* 02. 13 p. Available at: http://technomag.edu.ru/doc/ 299736.html (accessed August 15, 2021).
- Wang, L. H., Z. W. Wu, H. W. Chi, *et al.* 2015. Numerical and experimental study on the solid-fuel scramjet combustor. *J. Propul. Power* 31(2):685–693. doi: 10.2514/ 1.B35302.
- Lv, Zhong, Zhi-xun Xia, Bing Liu, and Li-ya Huang. 2017. Preliminary experimental study on solid-fuel rocket

GORENIE I VZRYV (MOSKVA) – COMBUSTION AND EXPLOSION 2021 volume 14 number 3

scramjet combustor. J. Zhejiang University – SCIENCE A 18(2):106–112.

- Shiplyuk, A. N., V. I. Zvegintsev, S. M. Frolov, D. A. Vnuchkov, T. A. Kiseleva, V. A. Kislovsky, S. V. Lukashevich, A. Yu. Melnikov, and D. G. Nalivaychenko. 2020. Gasification of low-melting hydrocarbon material in the airflow heated by hydrogen combustion. *Int. J. Hydrogen Energ.* 45:9098–9112.
- Shiplyuk, A. N., V. I. Zvegintsev, S. M. Frolov, D. A. Vnuchkov, V. A. Kislovsky, N. A. Kiseleva, S. V. Lukashevich, A. Yu. Melnikov, and D. G. Nalivaychenko. 2021. Gasification of low-melting fuel in a hightemperature flow of inert gas. *J. Propul. Power* 37(1):20– 28. doi: 10.2514/1.B37780.
- Arkhipov, V.A., S.A. Basalaev, V.T. Kuznetsov, V.A. Poryazov, and A.V. Fedorychev. 2021. Modeling of ignition and combustion of boron-containing solid propellants. *Combust. Explo. Shock Waves* 57(3):308–313.

- Zarko, V., V. Perov, A. Kiskin, and D. Nalivaichenko. 2019. Microwave resonator method for measuring transient mass gasification rate of condensed systems. *Acta Astronaut*. 158:272–276. doi: 10.1016/j.actaastro.2019.03.028.
- Evans, B. N., A. Favorito, and K. Kuo. 2005. Study of solid fuel burning-rate enhancement behavior in an X-ray translucent hybrid rocket motor. AIAA Paper No. 2005-3909. doi: 10.2514/6.2005-3909.
- Zvegintsev. V. I. 2014. Gazodinamicheskie ustanovki kratkovremennogo deystviya. Chast' 1. Ustanovki dlya nauchnykh issledovaniy [Short-duration gasdynamic facilities. Part 1. Facilities for scientific research]. Novosibirsk: Parallel. 551 p.
- 22. Trusov, B. G. 1991. *Modelirovanie khimicheskikh i fazovykh ravnovesiy pri vysokikh temperaturakh "Astra 4"* [Modeling of chemical and phase equilibria at high temperatures "Astra 4"]. Moscow: N. E. Bauman Moscow State Technical University Publs. 40 p.

Received August 15, 2021

Contributors

Vnuchkov Dmitry A. (b. 1980) — Candidate of Science in technology, junior research scientist, S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, 4/1 Institutskaya Str., Novosibirsk 630090, Russian Federation; vnuchkov@itam.nsc.ru

Zvegintsev Valery I. (b. 1944) — Doctor of Science in technology, chief research scientist, S.A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, 4/1 Institutskaya Str., Novosibirsk 630090, Russian Federation; zvegin@itam.nsc.ru

Nalivaichenko Denis G. (b. 1975) — Candidate of Science in technology, research scientist, S. A. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, 4/1 Institutskaya Str., Novosibirsk 630090, Russian Federation; denis@itam.nsc.ru

Frolov Sergey M. (b. 1959) — Doctor of Science in physics and mathematics, head of department, head of laboratory, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation; smfrol@chph.ras.ru