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Abstract: The specific features of combustion of cylindrical samples of magnesium powder of bulk density with
different additives — anhydrous copper sulfate, iron oxide, and crystalline hydratesCuSO4∗5H2O,FeSO4∗10H2O,
and Na2B4O7 ∗ 10H2O in air are studied experimentally. It has been shown that the introduction of an additive
in the composition of magnesium powder in an amount exceeding 2 %(wt.) leads to sample combustion with
a characteristic temperature of ∼ 1100 ◦C. The conversion of magnesium in the residue after combustion in this
mode is close to 100%. The specific composition of the additive and its amount do not significantly affect the nature
of time dependence of sample temperature during sample combustion. The residue after sample combustion in air
consists of a mixture of magnesium oxide and magnesium nitride. The ratio between the mass of the original sample
and the mass of the residue after sample combustion makes it possible to estimate the composition of the residue.
The obtained results are explained by the appearance of hot spots in the heating zone during flame propagation
along the sample caused by the reaction between the additive and magnesium, additional preheating of the sample
by these hot spots, and the achievement of a plateau with a temperature of ∼ 1100 ◦C during sample combustion
which corresponds to the boiling point of magnesium in the particles of the initial powder. The evaporation of
magnesium in this mode stabilizes the combustion process.
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Figure Captions

Figure 1 Images ofMg+5%CuSO4 powder sample burning in air: (a) t = 35.5 s; (b) 50.5; (c) 60.5; (d) 65.5; (e) 70.5; (f ) 75.5;
(g) 80.5; (h) t = 257.1 s; and 1 and 2 — thermocouples

Figure 2 Time histories of theMg + 5%CuSO4 sample temperature when burning in air: 1 — signal of the top thermocouple;
and 2 — signal of the bottom thermocouple

Figure 3 Time histories of theMg + CuSO4 sample temperature when burning in air at different contents of CuSO4 additive:
1 — 0%; 2 — 1%; 3 — 2,5%; and 4 — 5%. Record of thermocouple No. 2

Figure 4 Images of the Mg + 5%CuSO4*5H2O powder sample burning in air: (a) t = 50 s; (b) 65; (c) 75; (d) 90; (e) 100;
(f )120; (g) 130; and (h) t = 260 s

Figure 5 Time histories of the Mg + CuSO4 ∗ 5H2O sample temperature when burning in air at different contents of
CuSO4 ∗ 5H2O additive: 1 — 0%; 2 — 1%; 3 — 2,5%; 4 — 5%; and 5 — 10%. Record of the thermocouple No. 2

Figure 6 Time histories of the Mg + Na2B4O7 ∗ 10H2O sample temperature when burning in air at different contents of
Na2B4O7 ∗ 10H2O (borax) additive: 1 — 0%; 2 — 3%; 3 — 5%; 4 — 10%; and 5 — 15%

Figure 7 Time histories of the temperature of the magnesium powder burning in air without additive (1) and with 2.5% additive
of óuSO4 ∗ 5H2O (2), FeSO4 ∗ 7H2O (3), and CuSO4 (4)

Figure 8 Time histories of the magnesium powder temperature burning in air without additive (1) and with 5% additive of Fe2O3
(data from [6]) (2), óuSO4 ∗ 5H2O (3), and CuSO4 (4)

Figure 9 Time histories of the magnesium powder temperature burning in air without additive (1) and with 10% additive of
óuSO4 ∗ 5H2O (2), Fe2O3 (data from [6]) (3), andNa2B4O7 ∗ 10H2O (4)
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