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Abstract: A meshless numerical method of smoothed particle hydrodynamics (SPH) is implemented for solving
the thermal conductivity equation in bodies of complex three-dimensional (3D) geometry. The obtained numerical
solutions of test problems are compared with analytical and numerical solutions based on the control volume
method. The meshless SPH method is used for calculating the evolution of temperature in a 3D model of the
cooled cap of a cylinder block of internal combustion engine. The results of calculations based on the meshless
SPH method and the control volume method are shown to be in good agreement with each other. The meshless
SPH method is intended for the solution of conjagate heat transfer problems for confined reactive flows.

Keywords: 3D thermal conductivity equation; meshless numerical method; smoothed particle hydrodynamics;
temperature distribution

DOI: 10.30826/CE20130308

Figure Captions

Figure 1 Smoothing function and domain of influence for the ith particle

Figure 2 Computational domain for test problems

Figure 3 Comparison of the calculated temperature distributions obtained by the SPH method (points) with analytical and
numerical solutions (curves) for three test problems: (a) problem 1; (b) problem 2; (c) problem 3: 1 — NV = 20 000; 2 — 10 000;
and 3 — NV = 5000

Figure 4 Schematic of (a) full computational domain and (b) computational domain with a cut. The “cold” surface is shown in
gray, and the “hot” surface is shown in black

Figure 5 Comparison of temperature fields for two time moments predicted by the SPH method with equidistantly spaced
particles (left column), distribution of particles like the nodes of the computational mesh (middle column), and control-volume-
based method (right column) at t = 0.1 (a) and 5.0 s (b)
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