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Abstract: The paper presents the results of testing a method of temperature distribution measurements based on
planar laser-induced fluorescence (PLIF) of a hydroxyl radical (OH) using excitation of A2›+–X2š (1–0) band.
Thermometry is based on the ratio of the fluorescence intensity for (2–0) and (0–0) and (1–1) bands. For the
most common excitation lines Q2(7), Q1(8), R1(14), and P1(2), numerical simulation of fluorescence spectra was
performed using the LASKIN software. It was shown that the maximum temperature sensitivity is achieved for
Q1(8) transition. It was found that quenching of fluorescence has a minor effect on the accuracy of temperature
measurement. In the present work, a measurement procedure for a laminar premixed flame and turbulent premixed
swirling flame in a model combustion chamber was experimentally developed. It was shown that this technique is
effective for detecting high-temperature regions in turbulent flames. However, the combination of this approach
with particle image velocimetry (PIV) requires the use of a more efficient optical filter to separate the weak
fluorescence intensity of the (2–0) band transition and the radiation scattered by particles.
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Figure Captions

Figure 1 Sketch of experimental setup and equipment

Figure 2 Photographs of the laminar conical flame (a) and turbulent premixed swirling flame (b)

Figure 3 Time-integrated OH fluorescence spectra excited by Q1(8) transition of (1–0) band for different temperatures:
(a) T = 2000 К; and (b) T = 1600 К

Figure 4 Ratios between fluorescence intensity for spectral ranges 260–270 nm (I1) and 300–320 nm (I2) for different
transitions depending on temperature: 1 — R1(14); 2 — P1(2); 3 — Q1(8); and 4 — Q2(7). The symbols demonstrate the effect
of oxygen concentration for the Q1(8) transition at different fuel-to-air equivalence ratios: 5 — � = 0.6; 6 — 0.8; and 7 —
� = 1

Figure 5 PLIF images I1 (a) and I2 (b) for laminar premixed flame

Figure 6 Temperature field obtained after calibration

Figure 7 PLIF images I1 (a) and I2 (b) (no smoothing) for turbulent swirling flame in a combustion chamber without PIV
tracers

Figure 8 Temperature field without PIV tracers

Figure 9 PLIF images I1 (a) and I2 (b) for a turbulent swirling flame in a combustion chamber with PIV tracers
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