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Abstract: At a test rig for investigation of the processes of a liquid fuel atomization and mixing with air by flame tube
heads of model combustion chambers and of combustion in the flow of fuel–air mixture, certain characteristics of
kerosene spray and of the kerosene–air mixture combustion have been determined employing optical diagnostic
techniques. A model combustion chamber installed at the rig was a single-burner sector with a pneumatic atomizer
in the flame tube head. By using the particle shadow velocimetry technique, spatial distributions of average droplet
dimensions, axial velocities, and volume flux densities have been measured in the flow axial section, which prove
the efficiency of the test atomizer in formation of finely dispersed kerosene–air mixture flow with a stable structure
enabling a steady combustion process. Employing coherent anti-Stokes Raman scattering during combustion of
the mixture, gas temperature distributions have been measured in the flame section and the possibilities have been
demonstrated to define, in a certain point of the flow, both statistical characteristics of “instantaneous” temperature
fluctuations and relatively slow variations of temperature mean values during the combustion process. The optical
techniques employed in this study provide complementary data characterizing operation of combustion chambers.
These data can be used for verification of numerical models both of liquid fuel atomization and evaporation in a flow,
which accompany fuel–air mixture formation, and of combustion process of the mixture and its optimization.
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Figure Captions

Figure 1 Schematic of a particle shadow velocimetry system

Figure 2 Diagram of the coherent anti-Stokes scattering process employing Raman-resonant transitions between the rotational
levels of the ground (v = 0) and the excited (v = 1) vibrational states of N2 molecules in the flame at broadband Stokes optical
pumping

Figure 3 Schematic of the CARS spectrometer

Figure 4 Transverse distributions of Sauter diameter D32 of the atomized kerosene droplets (a) and of their average axial
velocity U (b) in the axial cross section of the mixture flow: 1 — α = 0.9; 2 — 1.0; and 3 — α = 1.5. The connecting lines are
drawn for better perception

Figure 5 A photograph of the flame at the exit of the flame tube (α ≈ 1.3)

Figure 6 Experimental (1) and calculated (2) rovibrational CARS-spectra of N2 molecules and their difference (3); T = 1685K

Figure 7 Experimentally-defined (from CARS-spectra) gas temperature distributions about 1 mm away from the edge of the
flame tube in the axial cross section of the flow at different air-to-fuel equivalence ratios α: 1 — 0.9; 2 — 1.0; and 3 — 1.5. The
connecting lines are drawn for better perception

Figure 8 Temporal variation of temperatures in a particular spatial point at the flow axis ∼ 1 mm away from the edge of the
flame tube at α = 1; Ttc = 1448 K
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