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Abstract: Using the computational technology of the Federal Research Center for Chemical Physics of the
Russian Academy of Sciences, multivariant three-dimensional numerical calculations of the operation process
in a hydrogen-fueled detonation ramjet at flight conditions with Mach number M = 2.0 at sea level were
performed. The possibility of organizing the continuous-detonation combustion of hydrogen in an expanding
annular combustor has been proved. The conceptual design of the hydrogen-fueled detonation ramjet for the
cruising flight speed of M = 2.0 at sea level is developed. Three-dimensional numerical calculations of the
operation process in the detonation ramjet in flight conditions with a Mach number ranging from 1.1 to 2.3 are
performed. The calculated effective thrust of such a ramjet is shown to become positive at M = 1.3, i. e., the
start-up Mach number for such a ramjet can be very low: below M = 2.0 which is typical for ramjets operating
on deflagrative combustion. A detonative ramjet demonstrator has been designed and manufactured. Its test fires
are performed in a pulsed wind tunnel at Mach numbersM = 2.0 and 1.5. The most important result of test fires
at Mach 2.0 is the experimental proof of the possibility of organizing stable continuous-detonation combustion of
hydrogen in the detonation ramjet of the developed design. The most important result of test fires at M = 1.5 is
the experimental proof of the possibility of organizing stable continuous-detonation combustion of hydrogen in the
detonation ramjet of the developed design at an off-design flight speed. Thus, it has been experimentally proved
that the start-up Mach number for the detonation ramjet can be about or less than M = 1.5, which confirms the
calculations qualitatively. For both Mach numbers, the thrust and economic performances of the detonation ramjet
are obtained.
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Figure Captions

Figure 1 Schematic of the computational domain

Figure 2 Conceptual design of the detonation ramjet (left to right: air intake, bypass channel, combustor). Dimensions are in
millimeters

Figure 3 Calculated distributions of local flow Mach number M (а) and static pressure Pst in the longitudinal section and at the
combustor surfaces under conditions of detonation ramjet flight with Mach 2 (b)

Figure 4 Calculated time histories of the mean static pressure in the combustor volume PCC (1) and in the outlet sections of the
combustor (2) and bypass channel (3) under conditions of detonation ramjet flight with Mach 2

Figure 5 Calculated dependence of the detonation ramjet effective thrust on the flight Mach number

Figure 6 Three-dimensional model of the detonation ramjet: (а) general view; and (b) longitudinal section (left to right, top
to bottom: (a) forward cone, air intake, forward support, fuel supply, gauges lines, detonation initiator, rare support; and
(b) forward cone, air intake, fuel manifold, combustor, isolator)
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Figure 7 Demonstrator of the detonation ramjet

Figure 8 Test rig with the pulse wind tunnel: (а) three-dimensional model; and (b) photograph (left to right, top to bottom:
thrust table, ramjet, supersonic nozzle, high-pressure chamber, air manifolds, outlet of air receiver (16 atm, 10.4 m3), air valves,
valve for gaseous fuel supply, cylinder for pressure control)

Figure 9 Measured time histories of pressure in the air receiver (Pr), in the high-pressure chamber (P0), and at the nozzle exit
(Pst,noz) in the test with М = 2.0

Figure 10 Example of primary records of all gauges measuring flow parameters in one of test fires: (а) pressure in hydrogen
manifold Pî2 ; (b) Pst,noz, (c) measured force F ; (d) mean static pressure in the combustor volume �PCC; and (e) pulsating
pressure in the combustor P ′

CC

Figure 11 Fragments of records of a pressure pulsation gauge in the combustor for longitudinally pulsed detonation (LPD)
mode in test fire No. 2 (а) and combined mode of LPD and continuous spinning detonation in test fire No. 4 (b)

Figure 12 Frames of video records of test fires Nos. 1 to 4 at М = 2.0: (a) No. 1, α = 0.80; (b) No. 2, α = 0.97; (c) No. 3,
α = 1.19; and (d) No. 4, α = 1.65

Figure 13 Frames of video records of test fires Nos. 1, 3, 5–8 at М = 1.5: (a) No. 1, α = 0.77; (b) No. 3, α = 0.83; (c) No. 5,
α = 1.05; (d) No. 6, α = 1.19; (e) No. 7, α = 1.41; and (f ) No. 8, α = 1.60

Table Captions

Table 1 Calculated thrust performance of detonation ramjet under flight conditions withí = 2.0

Table 2 Flow parameters in the supersonic nozzles

Table 3 Main parameters and results of detonation ramjet test fires atM = 2.0

Table 4 Main parameters and results of detonation ramjet test fires atM = 1.5
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