COMPLEX APPROACH TO THE PROBLEM OF NUMERICAL INVESTIGATION OF THE SHOCK WAVE – DENSE PARTICLES CLOUD INTERACTION

D. A. Sidorenko¹ and P. S. Utkin^{1,2}

¹Institute for Computer Aided Design, Russian Academy of Sciences, 19/18 Brestskaya 2nd Str., Moscow 123056, Russian Federation

²Moscow Institute of Physics and Technology, 9 Institutsky Per., Dolgoprudny, Moscow Region 141700, Russian Federation

Abstract: The problem of interaction between a planar shock wave and a cloud of particles is solved using two approaches. In the first, two-dimensional (2D) gasdynamic modeling of the interaction of a planar shock wave with Mach number 1.67 with a set of cylinders is carried out. The authors' original numerical algorithm, a Cartesian grid method, is used. The set of cylinders models a dense cloud of particles with the volume fraction of 0.15. As a result of interaction, the collective reflected and transmitted waves are formed. In the second approach, the one-dimensional (1D) system of equations governing dense two-phase flows is solved. The results of 1D modeling are compared with the cross-section averaged pressure distribution obtained in the 2D calculation. The quantitative agreement is achieved. The specific features of the process are discussed. The idea of a combined approach to the investigation of shock—cloud interaction has been formulated based on getting the particles' drag coefficient from the results of multidimensional calculations and using it in the two-phase model.

Keywords: shock wave; particles cloud; mathematical modeling; Cartesian grid method; two-fluid model

Acknowledgments

The work was carried out within the framework of the Grant of the President of the Russian Federation for state support of young Russian scientists (contract No. 14.W01.16.6756-MK).

References

- Boiko, V. M., V. P. Kiselev, S. P. Kiselev, A. N. Papyrin, S. V. Poplavsky, and V. M. Fomin. 1997. Shock wave interaction with a cloud of particles. *Shock Waves* 7:275–285. doi: 10.1007/s001930050082.
- Regele, J. D., J. Rabinovitch, T. Colonius, and G. Blanquart. 2014. Unsteady effects in dense, high speed, particle laden flows. *Int. J. Multiphas. Flow* 61:1–13. doi: 10.1016/j.ijmultiphaseflow.2013.12.007.
- Houim, R. W., and E. S. Oran. 2016. A multiphase model for compressible granular-gaseous flows: Formulation and initial tests. *J. Fluid Mech.* 789:166–220. doi: 10.1017/jfm.2015.728.
- Bedarev, I.A., A.V. Fedorov, and V.M. Fomin. 2012. Numerical analysis of the flow around a system of bodies behind the shock wave. *Combust. Explo. Shock Waves* 48(4):446–454. doi: 10.1134/S0010508212040119.
- Bedarev, I. A., and A. V. Fedorov. 2015. Computation of wave interference and relaxation of particles after passing of a shock wave. *J. Appl. Mech. Tech. Phys.* 56(5):750–760. doi: 10.1134/S0021894415050028.
- 6. Sidorenko, D.A., and P.S. Utkin. 2016. Metod dekartovykh setok dlya chislennogo modelirovaniya raspro-

straneniya udarnykh voln v oblastyakh slozhnoy formy [A Cartesian grid method for the numerical modeling of shock wave propagation in domains of complex shape]. *Vychislitel'nye metody i programmirovanie* [Numerical Methods and Programming] 17(4):353–364.

- Berger, M., and C. Helzel. 2012. A simplified h-box method for embedded boundary grids. *SIAM J. Sci. Comput.* 34(2):A861–A888. doi: 10.1137/110829398.
- 8. Utkin, P.S. 2017 (in press). Nekotorye vychislitel'nye aspekty modelirovaniya vzaimodeystviya udarnoy volny s oblakom chastits v ramkakh dvukhzhidkostnoy modeli [Some numerical aspects of the modeling of the shock wave particles cloud interaction using two-fluid model]. *Goren. Vzryv (Mosk.) Combustion and Explosion.*
- Saurel, R., and R. Abgrall. 1999. A multiphase Godunov method for compressible multifluid and multiphase flows. *J. Comput. Phys.* 150:425–467. doi: 10.1006/ jcph.1999.6187.
- Tanino, Y., and H. M. Nepf. 2008. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. *J. Hydraul. Eng.* 134(1):34–41. doi: 10.1061/(ASCE)0733-9429(2008)134:1(34).
- 11. Ergun, S. 1952. Fluid flow through packed columns. *Chem. Eng. Prog.* 48(2):89–94.

Received January 16, 2017

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2017 volume 10 number 2

Contributors

Sidorenko Dmitry A. (b. 1990) — junior research scientist, Institute for Computer Aided Design, Russian Academy of Sciences, 19/18 Brestskaya 2nd Str., Moscow 123056, Russian Federation; sidr1234@mail.ru

Utkin Pavel S. (b. 1985) — Candidate of Science in physics and mathematics, senior research scientist, Institute for Computer Aided Design, Russian Academy of Sciences, 19/18 Brestskaya 2nd Str., Moscow 123056, Russian Federation; associate professor, Moscow Institute of Physics and Technology, 9 Institutsky Per., Dolgoprudny, Moscow Region 141700, Russian Federation; pavel_utk@mail.ru