ВЛИЯНИЕ ТУРБУЛЕНТНОСТИ НА РАЗВИТИЕ ТЕЧЕНИЯ В ВЫСОКОСКОРОСТНОЙ КАМЕРЕ СГОРАНИЯ*

А. Э. Зангиев¹, В. С. Иванов², С. Н. Медведев³, С. М. Фролов⁴, Ф. С. Фролов⁵, И. В. Семенов⁶, В. В. Власенко⁷

Аннотация: Проведено двумерное численное моделирование развития течения в высокоскоростной камере сгорания ЦАГИ с учетом влияния турбулентных пульсаций температуры на среднюю скорость химических превращений. Показано, что учет этого эффекта приводит к изменению динамики процессов в камере, имеющей пилоны подачи горючего и уступ для стабилизации горения. После воспламенения топливно-воздушной смеси, вызванного дросселированием потока в конце камеры сгорания, возникающая в канале зона горения значительно быстрее достигает уступа и проскакивает к пилонам, чем в расчете без учета этого эффекта. Исследованы причины такого изменения динамики процессов. Оказалось, что интенсивность турбулентных пульсаций температуры в предпламенной зоне с большими градиентами скорости может достигать 6%—10% (110—180 K), что вызвано генерацией турбулентности интенсивностью до 15%—20% в этой зоне. Такие пульсации температуры оказывают существенное влияние на среднюю скорость реакции, приводя к ускорению процессов.

Ключевые слова: высокоскоростная камера сгорания; горение; турбулентные пульсации температуры; средняя скорость реакции; численное моделирование

Литература

1. *Фролов С. М.* Влияние турбулентности на среднюю скорость химических превращений: обзор // Горение и взрыв, 2016. Т. 9. № 1. С. 43—58.

^{*}Работа выполнена при поддержке Центра компьютерного моделирования им. О. М. Белоцерковского ЦАГИ-РАН.

¹Институт химической физики им. Н. Н. Семёнова Российской академии наук; Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ), sydra777@gmail.com

²Институт химической физики им. Н. Н. Семёнова Российской академии наук, ivanov.vls@gmail.com

 $^{^3}$ Институт химической физики им. Н. Н. Семёнова Российской академии наук, medvedevs@chph.ras.ru

⁴Институт химической физики им. Н. Н. Семёнова Российской академии наук; Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ), smfrol@chph.ras.ru

⁵Институт химической физики им. Н. Н. Семёнова Российской академии наук; Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ), f.frolov@chph.ru

⁶Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ), Институт автоматизации проектирования Российской академии наук, semenov@icad.org.ru

 $^{^7}$ Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ), vlasenko.vv@yandex.ru

- 2. *Волощенко О. В., Зосимов С. А., Николаев А. А.* Экспериментальное исследование процесса горения жидкого углеводородного топлива в плоском канале при сверхзвуковой скорости потока на входе // Модели и методы аэродинамики, 2002. М.: МНЦМО. С. 75.
- 3. Пиотрович Е. В., Серманов В. Н., Острась В. Н., Волощенко О. В., Зосимов С. А., Чевагин А. Ф., Власенко В. В., Мещеряков Е. А. Исследование проблем горения жидкого углеводородного топлива в каналах // Модели и методы аэродинамики, 2002. М.: МНЦМО. С. 102.
- 4. *Власенко В. В.* Численное исследование нестационарного распространения горения по каналу со сверхзвуковым течением вязкого газа // Хим. физика, 2011. Т. 30. № 9. С. 42—54.
- 5. *Власенко В. В.* SOLVER3: двадцатилетний опыт развития и использования научной программы для моделирования двумерных течений с горением // Труды ЦАГИ, 2015. № 2735.
- 6. Фролов С. М., Зангиев А. Э., Семенов И. В., Власенко В. В., Волощенко О. В., Николаев А. А., Ширяева А. А. Моделирование течения в высокоскоростной камере сгорания в трехмерной и двумерной постановке // Горение и взрыв, 2015. Т. 8. № 1. С. 126—135.
- 7. *Басевич В. Я., Фролов С. М.* Глобальные кинетические механизмы для моделирования многостадийного самовоспламенения углеводородов в реагирующих течениях // Хим. физика, 2006. Т. 25. № 6. С. 54—62.
- 8. *Spalding D. B.* Concentration fluctuations in a round turbulent free jet // Chem. Eng. Sci., 1971. Vol. 26. P. 95–107.

Поступила в редакцию 18.12.15